Th17 cells were sorted ex vivo from PB of healthy donors as CD4+CD161+CCR6+CXCR3-. Following, cells were transduced with a lentiviral vector carrying the Eomes gene or with an empty vector. Infected cells were then enriched by MACS separation using the reporter gene NGFR as selection marker. Finally, cells were frozen for RNA analysis.
Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation.
Cell line
View SamplesMouse norovirus (MNV) causes acute or chronic infection in immunocompetent hosts, but the CD8 T cell determinants of viral persistence versus clearance are unknown.
Differentiation and Protective Capacity of Virus-Specific CD8<sup>+</sup> T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche.
Specimen part
View SamplesNormal arteries contain a large population of tissue resident macrophages (M). Their origins, as well as the mechanisms that sustain them during homeostasis and disease, however, are poorly understood. Gene expression profiling, we show, identifies arterial M as a distinct population among tissue M. Ontologically, arterial M arise before birth, though CX3CR1-, Csf1r-, and Flt3-driven fate mapping approaches demonstrate M colonization occurs through successive contributions of yolk sac (YS) and conventional hematopoiesis. In adulthood, arterial M renewal is driven by local proliferation rather than monocyte recruitment from the blood. Proliferation sustains M not only during steady state conditions, but mediates their rebound after severe depletion following sepsis. Importantly, the return of arterial M to functional homeostasis after infection is rapid; repopulated M exhibit a transcriptional program similar to resting M and efficiently phagocytose bacteria. Collectively, our data provide a detailed framework for future studies of arterial M function in health and disease.
Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth.
Sex, Specimen part
View SamplesTrypanosoma cruzi is an obligate intracellular protozoan parasite that causes human Chagas disease, a leading cause of heart failure in Latin America. Using Affymetrix oligonucleotide arrays we screened phenotypically diverse human cells (foreskin fibroblasts, microvascular endothelial cells and vascular smooth muscle cells) for a common transcriptional response signature to T. cruzi. A common feature was a prominent type I interferon response, indicative of a secondary response to secreted cytokines. Using transwell plates to distinguish cytokine-dependent and -independent gene expression profiles in T. cruzi-infected cells, a core cytokine-independent response was identified in fibroblasts and endothelial cells that featured metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding. Significant downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection impedes cell cycle progression in the host cell.
Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling.
No sample metadata fields
View SamplesThe intracellular pathogen Trypanosoma cruzi secretes an activity that blocks TGF--dependent induction of connective tissue growth factor (CTGF/CCN2). Here, we address the mechanistic basis for T. cruzi-mediated interference of
A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts.
Specimen part
View SamplesBefore and after anaerobic Fe(II) shocked WT and ?bqsR of late stationary phase P. aeruginosa PA14 strains Associated publication: Kreamer NN, Costa F, Newman DK. 2015. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. mBio 6(1):e02549-14. doi:10.1128/mBio.02549-14. Overall design: Expression profiles of rRNA-depleted total RNA from WT and ?bqsR Fe(II)-shocked (before and after 30 min incubation with 200 µM ferrous ammonium sulfate ) cultures grown anaerobically to deep stationary phase (A500 = 0.8) in Fe-limited (1 µM ferrous ammonium sulfate) MOPS minimal medium containing succinate as the carbon source, in triplicate
The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mice without macroH2A histone variants.
Sex, Specimen part
View SamplesMacroH2As core histone variants have a unique structure that includes C-terminal nonhistone domain. MacroH2As are highly conserved in vertebrates, and are thought to regulate gene expression. However the nature of genes regulated by macroH2As and the biological significance of macroH2As for the organism remain unclear. Here we examine macroH2A function in vivo by knocking out both macroH2A1 and macroH2A2 in the mouse.
Mice without macroH2A histone variants.
Sex, Specimen part
View SamplesMacroH2As core histone variants have a unique structure that includes C-terminal nonhistone domain. MacroH2As are highly conserved in vertebrates, and are thought to regulate gene expression. However the nature of genes regulated by macroH2As and the biological significance of macroH2As for the organism remain unclear. Here we examine macroH2A function in vivo by knocking out both macroH2A1 and macroH2A2 in the mouse.
Mice without macroH2A histone variants.
Sex, Specimen part
View SamplesFollicular lymphoma (FL) is an indolent lymphoma associated with follicular center B cells, and typically contains the Bcl-2 chromosomal translocation t(14;18), which leads to overexpression of the anti-apoptotic intracellular protein Bcl-2. FLs are sensitive to chemotherapy; however, patient relapses occur and response duration becomes progressively shorter, with the majority of patients eventually dying from the disease. Enzastaurin (LY317615), an acyclic bisindolylmaleimide, was initially developed as an ATP-competitive selective inhibitor of PKC. We found, in agreement with recent reports, that enzastaurin inhibits cell proliferation and induces apoptosis. These results are consistent with decreased phosphorylation of the Akt pathway and its downstream targets. To provide new insights into the anti-tumor action of enzastaurin on non-Hodgkin lymphoma, we investigated its effects on gene expression profiles of the B cell lymphoma RL cell line by oligonucleotide microarray analysis. We identified a set of 41 differentially expressed genes, mainly involved in cellular adhesion, apoptosis, inflammation, and immune and defense responses. These observations provide new insights into the mechanisms involved in the induction of apoptosis by enzastaurin in B cell lymphoma cell lines, and identify possible pathways that may contribute to the induction of apoptosis.
Genomic profiling of enzastaurin-treated B cell lymphoma RL cells.
Specimen part, Cell line, Treatment
View Samples