Cytoplasmic DNA triggers the activation of the innate immune system. While downstream signaling components have been characterized, the DNA sensing components remain largely elusive. We performed a systematic proteomics screen for proteins that associate with DNA, traversed to a screen for IFN--induced transcripts. We identified DSIRE (DNA sensor for the IL-1 response, previously called AIM2) as a candidate cytoplasmic sensor. DSIRE showed a marked selectivity for double-stranded DNA. DSIRE can recruit the inflammasome adaptor ASC and gets redistributed to ASC speckles upon coexpression of ASC. RNAi-mediated reduction of DSIRE expression led to an impairment in IL-1 maturation. Reconstitution of unresponsive cells with DSIRE, ASC, caspase 1 and IL-1 showed that DSIRE is sufficient for inflammasome activation. Overall, our data strongly suggest that DSIRE is a cytoplasmic DNA sensor for the inflammasome.
An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome.
No sample metadata fields
View SamplesTREM-2 has been described to be a phagocytic receptor. We assessed the influence of TREM-2 on gene expression in alveolar macrophages (AM)
The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia.
Specimen part
View SamplesThe cellular response to replication stress requires the DNA-damage responsive kinase ATM and its co-factor ATMIN, however the roles of this signaling pathway following replication stress are unclear. RNA-seq and subsequent differential expression analyses were utilized to identify the functions of ATM and ATMIN in response to replication stress induced by Aphidcolin (APH). Overall design: Mouse Embryonic Fibroblasts (MEFs) deleted for ATM or ATMIN were treated with 1µM APH or DMSO as a control. Two different wild-type MEF cell lines (wtATM, wtATMIN) served as controls. RNA-seq was performed in duplicates, in a total of 32 samples, with an average of 31.1M aligned readsobtained per group,with 15.5M reads obtained per replicate.
A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN.
Specimen part, Treatment, Subject
View SamplesBreast cancer is genetically heterogeneous, and recent studies have underlined a prominent contribution of epigenetics to the development of this disease. To uncover new synthetic lethalities with known breast cancer oncogenes, we screened an epigenome-focused short hairpin RNA library on a panel of engineered breast epithelial cell lines. Here we report a selective interaction between the NOTCH1 signaling pathway and the SUMOylation cascade. Knockdown of the E2-conjugating enzyme UBC9 (UBE2I) as well as inhibition of the E1-activating complex SAE1/UBA2 using ginkgolic acid impairs the growth of NOTCH1-activated breast epithelial cells. We show that upon inhibition of SUMOylation NOTCH1-activated cells proceed slower through the cell cycle and ultimately enter apoptosis. Mechanistically, activation of NOTCH1 signaling depletes the pool of unconjugated small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 leading to increased sensitivity to perturbation of the SUMOylation cascade. Depletion of unconjugated SUMO correlates with sensitivity to inhibition of SUMOylation also in patient-derived breast cancer cell lines with constitutive NOTCH pathway activation. Our investigation suggests that SUMOylation cascade inhibitors should be further explored as targeted treatment for NOTCH-driven breast cancer. Overall design: We treated MCF10A and NOTCH1 cells with either DMSO or ginkgolic acid 30 uM for 3 days. Two replicates have been analysed for each condition.
NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation.
No sample metadata fields
View SamplesA basal (MDAMB468) and luminal (ZR75-1) cell line were treated with DMSO or PKC412 for 6h Overall design: 2 DMSO and 3 PKC412 treated samples for each cell line
Targeting a cell state common to triple-negative breast cancers.
No sample metadata fields
View SamplesUnderstanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF's upstream noncoding sequence (including the 5'UTR) fused to the GFP reporter gene alone or together with the TF's coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map.
Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.
Age, Specimen part
View SamplesHuh7/5-2 cells (Binder et al., Hepatology 2007) were mock infected (DMEM) (time points 4 and 48 h) or infected with the chimeric HCV virus Jc1 (Pietschmann et al., PNAS 2006) (all time points).
Viral immune modulators perturb the human molecular network by common and unique strategies.
Specimen part, Time
View SamplesRight ventricular samples were serially acquired during surgical repair of ventricular septal defect. Expression profiling revealed three patterns of gene expression: (1) increased expression above control levels within one hour of cardioplegic arrest, with further amplification during early reperfusion; (2) increased expression limited to the reperfusion phase; and (3) reduced expression during reperfusion.
Early gene expression profiles during intraoperative myocardial ischemia-reperfusion in cardiac surgery.
No sample metadata fields
View SamplesNon-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat. Overall design: RNA-seq on Drosophila head samples fed control and sucralose diet
Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.
Specimen part, Cell line, Subject
View SamplesThe 6-hydroxydopamine (6OHDA) rat model of parkinsonism is among the first, and most commonly used, animal models of Parkinsons disease. It provides insight into the compensatory changes that occur in the brain after dopamine (DA) neuron degeneration. In order to better define the consequences of substantia nigra DA neuron loss on the neural and glial populations during and following nigrostriatal degeneration, tissue was collected and evaluated from the substantia nigra of 6OHDA or vehicle treated, or nave rats at 1, 2, 4, 6 & 16 weeks.
The longitudinal transcriptomic response of the substantia nigra to intrastriatal 6-hydroxydopamine reveals significant upregulation of regeneration-associated genes.
Sex, Specimen part
View Samples