Pulmonary sarcomatoid carcinomas (PSCs) are rare and aggressive histological types of non-small cell lung cancer (NSCLC) with a median overall survival of about 9-12 months. In detail, PSCs comprise five different histological subtypes: pleomorphic carcinoma (PLC), giant cell carcinoma (GCC), spindle cell carcinoma (SCC), carcinosarcoma (CS) and pulmonary blastoma (PB). Preoperative pathological diagnosis may fail to identify these tumors and therapeutic options are still limited. PSCs have been scarcely characterized from a molecular point of view because of their rarity, and to date no specific markers have been found for PSCs in comparison with other NSCLC types. In this study a highly sensitive amplicon based whole transcriptome quantification analysis was performed, using the Ion AmpliSeq Transcriptome Human Gene Expression Kit (Life Technologies) on a selected series of 14 PSCs (1 PB, 4 CS, 2 SCC, 2 GCC, 5 PLC) and 3 samples of normal lung parenchyma. PSCs expression data were then compared with transcriptome data of lung adenocarcinoma and squamous cell carcinoma available on The Cancer Genome Atlas database. Thirty-eight genes specifically deregulated in PSC samples were identified. Among these, IGJ and SLMAP were validated by immunohistochemistry on an independent cohort (30 PSCs, 31 lung adenocarcinoma and 31 squamous cell carcinoma cases). Furthermore, a pathway enrichment analysis, performed on differentially expressed genes, revealed that FOXO signalling and Fanconi Anemia pathways, playing a pivotal role in cancer development and progression, are enriched in PSC tumors. The description of peculiar molecular profiles besides increasing our knowledge on PSCs biology may suggest new diagnostic and therapeutic strategies. Overall design: Whole transcriptome targeted gene quantification analysis was perfomed on a selected series of 14 pulmonary sarcomatoid carcinomas (1 pulmonary blastoma, 4 carcinosarcomas, 2 spindle cell carcinomas, 2 giant cell carcinomas, 5 pleomorphic carcinomas) and 3 samples of normal lung parenchyma, using the Ion AmpliSeq Transcriptome Human Gene Expression Kit ( Life Technologies).
Whole transcriptome targeted gene quantification provides new insights on pulmonary sarcomatoid carcinomas.
Sex, Age, Specimen part, Subject
View SamplesGene expression profiles in blasts from three APL patients expressing PML/RAR were assessed before and after treatment with 1 uM retinoic acid (RA) in vitro for four hours. We then studied a U937 clone conditionally expressing PML/RAR (U937-PR), (Grignani et al. 1993) (Alcalay et al. 2003), and compared the gene expression profile prior to and after 4 hours of treatment with 1 uM RA, to that obtained from a cell line bearing an empty vector (U937-MT). For each sample, biotinylated cRNA targets were synthesized starting from 5ug of total RNA, and hybridized to the complete set of HG-U133 Affymetrix oligonucleotide chips, which explores the expression of approximately 45,000 human transcripts. Results were analyzed using MASv5 and further elaborated with the GenePicker software. GeneChip probe sets regulated by RA in each sample were clustered into non-redundant regulated genes according to UniGene release Hs.166.
Molecular signature of retinoic acid treatment in acute promyelocytic leukemia.
Specimen part, Disease, Cell line, Subject, Compound
View SamplesTumor tissue heterogeneity is a well known feature of several solid tumors. Neuroblastic Tumors (NTs) is a group of paediatric cancers with a great tissue heterogeneity. Most of NTs are composed of undifferentiated, poorly differentiated or differentiating neuroblastic (Nb) cells with very few or absent Schwannian stromal (SS) cells: these tumors are grouped as Neuroblastoma (Schwannian stroma-poor). The remaining NTs are composed of abundant SS cells and classified as Ganglioneuroblastoma (Schwannian stroma-rich) intermixed or nodular and Ganglioneuroma. The importance to understand Nb and SS gene signatures in NTs, is to clarify the complex network mechanism of tumor growth and progression. In order to identify the Nb and SS cells gene signatures, we analyzed the gene expression profiling of 19 cases of neuroblastic tumors: 10 stroma poor (NTs-SP) and 9 stroma rich (NTs-SR), by high density oligonucleotide microarrays. Moreover, the analysis was performed in parallel on both whole and laser microdissected tumor samples: from 4 of 19 cases, was isolated different areas all composed of pure cellular populations.
Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory.
No sample metadata fields
View SamplesREtr causes genomic instability in U937 cells. Activated forms of c-KIT, like c-KIT(N822K), rescues the Retr induced genomic instability by increasing the rate of DNA repair by homologous recombination
Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors.
Cell line
View SamplesApproximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of Nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, Fms-like tyrosine kinase (FLT3) mutations and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 with non-major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc- AMLs, regardless of the presence of FLT3 mutations or non-major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor.
Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance.
Specimen part
View SamplesUsing a mimic miR-200c was restored to an aggressive, Type 2 endometrial cancer cell line, Hec50
MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents.
Specimen part, Cell line
View SamplesCdc34 is an essential E2 ubiquitin conjugating enzyme found in nearly all eukaryotes. It contains a highly conserved motif composed of S73/S97/12 amino acid insert near the active site cysteine. This motif is unique to Cdc34/Ubc7 type E2s while other E2s contain K/D/no insert at these positions. To better understand the function of this motif we mutated Cdc34 S73/S97/insert to be K/D/no insert and observed changes in transcript levels in mid-log phase yeast cells. ABSTRACT [Cdc34 is a ubiquitin conjugating enzyme necessary for the ubiquitylation of substrates by the SCF family of ubiquitin ligases. Previous work has shown that the Cdc34 protein is phosphorylated in vivo on serine residues. Cdc34 contains two serines within its catalytic domain, S73 and S97, that together with a 12 amino acid acidic loop, constitute a highly conserved motif (serine, serine, insert) among all members of the Cdc34 family of E2 enzymes. Using phosphospecific antibodies, we show that the essential serine S97 is indeed phosphorylated in vivo. Furthermore, this phosphorylation event is regulated by treatment with pheromone in yeast. Consistently, expression of a Cdc34 mutant lacking this motif (serine, serine, insert) leads to misregulation of the SCF substrates, Sic1, Far1, Cln1 and Cln2 and suppresses the cell cycle arrest brought about by an activated mating pathway. We further explored the function of this motif by microarray analysis and show that the transcripts of nearly the entire Sic1 cluster of co-transcribed genes is altered in a strain the expresses Cdc34 lacking this motif. Our data reveals that this highly conserved motif in Cdc34 and its phosphorylation are important for modulating SCF substrate abundance both transcriptionally and post-transcriptionally.]
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition.
Specimen part, Cell line, Treatment
View SamplesThe activated B-cell (ABC) to plasmablast transition is the cusp of antibody secreting cell (ASC) differentiation but is incompletely defined. We apply expression time-courses, parsimonious gene correlation network analysis, and ChIP-seq to explore this in human cells. The transition initiates with input signal loss leading within hours from cell growth dominant programs to enhanced proliferation, accompanied from 24h by ER-stress response, secretory optimization and upregulation of ASC features. Clustering of genomic occupancy for ASC transcription factors (TFs) IRF4, BLIMP1 and XBP1 with CTCF and histone marks defines distinct patterns for each factor in plasmablasts. Integrating TF-associated clusters and modular gene expression identifies a dichotomy: XBP1 and IRF4 significantly link to gene modules induced in plasmablasts, but not to modules of repressed genes, while BLIMP1 links to modules of ABC genes repressed in plasmablasts but is not significantly associated with modules induced in plasmablasts. Pharmacological inhibition of the G9A (EHMT2) histone-methytransferase, a BLIMP1 co-factor that catalyzes repressive H3K9me2 marks, leaves functional ASC differentiation intact but de-represses ABC-state genes. Thus, in human plasmablasts IRF4 and XBP1 emerge as the dominant association with ASC gene expression, while BLIMP1 links to repressed modules with particular focus in repression of the B-cell activation state.
A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition.
Specimen part
View SamplesPolycomb repressive complex 2 (PRC2-EZH2) methylates histone H3 at lysine 27 (H3K27) and is required to maintain gene repression during development. Misregulation of PRC2 is linked to a range of neoplastic malignancies, which is believed to involve methylation of H3K27. However, the full spectrum of non-histone substrates of PRC2 that might also contribute to PRC2 function is not known. We characterized the target recognition specificity of PRC2 and used the resultant data to screen for novel potential targets. The RNA polymerase II (Pol II) transcription factor, Elongin A (EloA), is methylated by PRC2 in vivo. Mutation of the methylated EloA residue decreased repression of many, but not all, PRC2 target genes as measured by both steady state and nascent RNA levels. We propose that PRC2 regulates transcription of a subset of target genes in part via methylation of EloA. Overall design: We examined the transcripitonal profile of EEDnull, EloAnull, EloA mutant, and parental mouse embryonic stem cells by RNAseq. Please note that the .bw processed data file was generated from the *mESC replicate samples together and linked to the corresponding *rep1 sample records.
Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription.
Specimen part, Subject
View Samples