Human samples of various thyroid carcinomas, adenomas, and normals, each from a different patient, had mRNA assays performed using Affymetrix HG_U133A arrays, with 22283 probe-sets. The 99 samples consisted of 4 normals, 10 follicular adenomas, 13 follicular carcinomas, 7 oncocytic adenomas, 8 oncocytic carcinomas, 51 papillary carcinomas (each typed as having classical, follicular or tall cell morphology), 4 anaplastic carcinomas, and 2 medullary carcinomas. Interesting additional information on common mutations are provided including RAS mutation, BRAF mutation, RET/PTC rearrangements, and PAX8/PPARG translocations. Details of those assays are provided in our linked publications, as well as additional details on the specific mutations in a few special cases. No survival data is provided. Information for 93 of the 99 samples was previously made available on the web. The anaplastic and medullary carcinoma data were not previously shared. A supplementary Excel spreadsheet holding the same processed data as the series matrix file is provided and is more compact. The raw (.CEL) files are also provided.
Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis.
Specimen part
View SamplesThe goal of this experiment was to determine gene expresssion differences between neutrophils from either K14cre;CdhF/F;Trp53F/F mammary tumor-bearing mice or wild-type mice. Overall design: Neturophil expression profiles were compared between four wild-type mice and five K14cre;CdhF/F;Trp53F/F mice.
IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis.
No sample metadata fields
View SamplesMacrophages and neutrophils are almost invariably the most abundant intratumoral immune cells, and recent studies have revealed a sinister role for these cells in limiting chemotherapy efficacy. However, how these tumor-educated myeloid cells influence chemotherapy response is incompletely understood. Targeting tumor-associated macrophages by CSF-1 receptor (CSF-1R) blockade in a pre-clinical transgenic mouse model for breast cancer improved the anti-cancer efficacy of cisplatin. Importantly, our findings reveal that macrophage blockade in combination with cisplatin treatment evokes a compensatory neutrophil response limiting the therapeutic synergy of this therapy combination. Here we characterize neutrophils and macrophages gene expression profile from the tumor of mice treated with anti-CSF-1R, Control antibody, Cisplatin/anti-CSF-1R or cisplatin/control ab. Overall design: Intervention studies combining anti-CSF1R and chemotherapy in a transgenic mouse model for breast cancer.
Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).
Specimen part, Disease, Disease stage, Subject
View SamplesThe prime focus of the current therapeutic strategy for Multiple Myeloma (MM) is an early and deep tumour burden reduction; this characterizes and defines the complete response (CR). To date, no description of the characteristics of the plasma cells (PC) prone to achieve CR has been reported. This study aimed at the molecular characterization of PC derived from MM patients who achieved CR after bortezomib-thalidomide-dexamethasone (VTD) first line therapy.
The genetic and genomic background of multiple myeloma patients achieving complete response after induction therapy with bortezomib, thalidomide and dexamethasone (VTD).
Specimen part, Disease, Disease stage
View SamplesIn homeostasis of adult vertebrate tissues, stem cells are thought to self-renew by infrequent and asymmetric divisions that generate another stem cell daughter and a progenitor daughter cell committed to differentiate. This model is based largely on in vivo invertebrate or in vitro mammal studies. Here we examine the dynamic behaviour of adult hair follicle stem cells in their normal setting by employing mice with repressible H2B-GFP expression to track cell divisions and Cre inducible mice to perform long-term single cell lineage tracing. We provide direct evidence for the infrequent stem cell division model in intact tissue. Moreover, we find that differentiation of progenitor cells occurs at different times and tissue locations than self-renewal of stem cells. Distinct fates of differentiation or self-renewal are assigned to individual cells in a temporal-spatial manner. We propose that large clusters of tissue stem cells behave as populations, whose maintenance involves unidirectional daughter-cell fate decisions.
Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells.
Specimen part
View SamplesPurpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study was to obtain the trasncriptome of DGCR8_KO mESCs to compare it with the transcriptome of WT mESCs (deposit separately). Overall design: mRNA profiles of DGCR8_KO mouse embryonic stem cells were generated by deep sequencing, in duplicate, using Illumina HiSeq2000.
Noncanonical function of DGCR8 controls mESC exit from pluripotency.
Specimen part, Cell line, Subject
View SamplesOvarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer.
Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View SamplesThe aim of this study was to describe the gene expression patterns related to the differentiation and mineralization of bone-forming cells, including activation and/or repression of osteogenic or non-osteogenic pathways, remodeling of cell architecture, cell adhesion, cell communication, and assembly of extracellular matrix. The study implied patient selection, tissue collection, isolation and culture of human marrow stromal cells (hMSC) and osteoblasts (hOB), and characterization of bone-forming cells. RNA samples were collected at defined time points, in order to understand the regulation of gene expression during the processes of cell differentiation/mineralization that occur during bone repair. Transcriptome analysis was performed by using the Affymetrix GeneChip microarray technology platform and GeneChip Human Genome U133 Plus 2.0 Array. Our results help to design a gene expression profile of bone-forming cells during specific steps of osteogenic differentiation. These findings offer an useful tool to monitor the behaviour of osteogenic precursors cultured in presence of exogenous stimuli, i.e. growth factors, or onto 3D scaffolds for bone engineering. Moreover, they can contribute to identify and clarify the role of new genes for a better understanding of the molecular mechanisms regulating osteogenesis.
Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.
No sample metadata fields
View Samples