Transcription factors and signaling pathways that regulate stem cells and specialized hormone-producing cells in the pituitary gland have been the subject of intense study and have yielded a mechanistic understanding of pituitary organogenesis and disease. Yet, the regulation of stem cell proliferation and differentiation, the heterogeneity among specialized hormone-producing cells, and the role of non-endocrine cells in the gland remain important, unanswered questions. Recent advances in single-cell RNA sequencing (scRNAseq) technologies provide new avenues to address these questions. We performed scRNAseq on approximately 13,663 cells pooled from six whole pituitary glands of 7-week-old C57BL/6 male mice. We identified pituitary endocrine and stem cells in silico, as well as other support cell-types such as endothelia, connective tissue, and red and white blood cells. Differential gene expression analyses identify known and novel markers of pituitary endocrine and stem cell populations. We demonstrate the value of scRNAseq by in vivo validation of a novel gonadotrope-enriched marker, Foxp2. We present novel scRNAseq data of in vivo pituitary tissue, including data from agnostic clustering algorithms which suggest the presence of a somatotrope subpopulation enriched in sterol/cholesterol synthesis genes. At the same time, we show that incomplete transcriptome annotation can cause false negatives on some scRNAseq platforms that only generate 3' transcript end sequences, and use in vivo data to recover reads of the pituitary transcription factor Prop1. Ultimately, scRNAseq technologies represent a significant opportunity to address longstanding questions regarding the development and function of the different populations of the pituitary gland throughout life. Overall design: 10x Chromium single-cell RNAseq of cells from pituitary glands of 7-week-old male C57BL/6 mice
Single-Cell RNA Sequencing Reveals Novel Markers of Male Pituitary Stem Cells and Hormone-Producing Cell Types.
Sex, Specimen part, Cell line, Subject
View SamplesFull title: Predictive Gene Signatures as Strong Prognostic Indicators of the Effectiveness of Bacillus CalmetteGurin (BCG) Immunotherapy in Primary pT1 Bladder Cancers
Gene signatures for the prediction of response to Bacillus Calmette-Guerin immunotherapy in primary pT1 bladder cancers.
Sex, Age, Disease stage
View SamplesStress granules are small RNA-protein granules that modify the translational landscape during cellular stress to promote survival. The RhoGTPase RhoA is implicated in the formation of RNA stress granules. Our data demonstrate that the cytokinetic proteins ECT2 and AurkB are localized to stress granules in human astrocytoma cells. AurkB and its downstream target histone-3 are phosphorylated during arsenite-induced stress. Chemical (AZD1152-HQPA) and siRNA inhibition of AurkB results in fewer and smaller stress granules when analyzed utilizing high throughput fluorescent based cellomics assays. RNA immunoprecipitation with the known stress granule aggregates TIAR and G3BP1 was performed on astrocytoma cells and subsequent analysis revealed that astrocytoma stress granules harbour unique mRNAs for various cellular pathways including cellular migration, metabolism, translation and transcriptional regulation. Human astrocytoma cell stress granules contain mRNA that are known to be involved in glioma signaling and the mTOR pathway. These data provide evidence that RNA stress granules are a novel form of epigenetic regulation in astrocytoma cells, which may be targetable by chemical inhibitors and enhance astrocytoma susceptiblity to conventional therapy such as radiation and chemotherapy.
Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule-Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells.
Specimen part, Cell line
View SamplesMetastasis leads to the majority of deaths in breast cancer patients. Here we investigated the molecular and biochemical signaling pathways altered by RECK, a major metastasis suppressor gene in breast cancer. We overexpressed RECK in 2 highly invasive cell lines and knocked-down RECK expression in 2 poorly invasive cell lines. IPA analysis of differentially expressed genes revealed IL-6, and IL8 signaling alteration with RECK pertubation. This lead us to discover that RECK suppresses metastasis and neoangiogenesis at secondary sites by inhibiting STAT3 dependent VEGF & uPA regulating. This finding is significant because it reveals the biology behind a major metastasis suppressor gene in cancer.
RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch.
Specimen part, Cell line
View SamplesWe sequenced dorsal root ganglia mRNA from 25 BXD recombinant inbred mouse strains to determine their variation in gene expression. Overall design: Dorsal root ganglia mRNA profiles of recombinant inbred mouse strains
HTR7 Mediates Serotonergic Acute and Chronic Itch.
No sample metadata fields
View SamplesWe performed gene expression microarray comparing Osx-mCherry cells and Ocn-Topaz cells isolated from the OsxCre-mCherry;OcnCre-Topaz double transgenic mice by flow cytometry.
Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow.
Specimen part
View SamplesPeripheral T-cell lymphoma (PTCL) encompasses a heterogeneous group of neoplasms with generally poor clinical outcome. Currently 50% of PTCL cases are not classifiable: PTCL-not otherwise specified (NOS). Gene-expression profiles on 372 PTCL cases were analyzed and robust molecular classifiers and oncogenic pathways that reflect the pathobiology of tumor cells and their microenvironment were identified for major PTCL-entities, including 114 angioimmunoblastic T-cell lymphoma (AITL), 31 anaplastic lymphoma kinase (ALK)-positive and 48 ALK-negative anaplastic large cell lymphoma, 14 adult T-cell leukemia/lymphoma and 44 extranodal NK/T-cell lymphoma that were further separated into NK-cell and gdT-cell lymphomas. Thirty-seven percent of morphologically diagnosed PTCL-NOS cases were reclassified into other specific subtypes by molecular signatures. Reexamination, immunohistochemistry, and IDH2 mutation analysis in reclassified cases supported the validity of the reclassification. Two major molecular subgroups can be identified in the remaining PTCL-NOS cases characterized by high expression of either GATA3 (33%; 40/121) or TBX21 (49%; 59/121). The GATA3 subgroup was significantly associated with poor overall survival (P=.01). High expression of cytotoxic genesignaturewithin the TBX21 subgroup also showed poor clinical outcome (P=.05). InAITL, high expression of several signatures associated with the tumor microenvironment was significantly associated with outcome. A combined prognostic score was predictive of survival in an independent cohort (P=.004).
Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesBackground: Germinal center B-cell (GCB) lymphomas are common in children and adults. The prognosis strongly depends on age. Subgroups of GCB-lymphomas are characterized by chromosomal translocations affecting immunoglobulin (IG) loci leading to oncogene deregulation.
Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Sex, Age
View SamplesThe pathogenesis of diffuse large B cell lymphomas (DLBCL) is only partly understood. We analyzed 148 DLBCL by high resolution single nucleotide polymorphism (SNP)-chips to characterize genomic imbalances. Seventy-nine cases were of the germinal center B-cell like (GCB) type of DLBCL, 49 of the activated B-cell like (ABC) subtype and 20 were type 3 DLBCL. Twenty-four regions of recurrent genomic gains and 38 regions of recurrent genomic losses were identified over the whole cohort, with a median of 25 imbalances per case for ABC-DLBCL and 19 per case for GCB-DLBCL. Several recurrent copy number changes showed differential frequencies in the GCB- and ABC-DLBCL subgroups, including gains of HDAC7A predominantly in GCB-DLBCL (38% of cases) and losses of BACH2 and CASP8AP2 predominantly in ABC-DLBCL (35%), hinting at disparate pathogenetic mechanisms in these entities. Correlating gene expression and copy number revealed a strong gene dosage effect in all tumors, with 34% of probesets showing a concordant expression change in affected regions. Two new potential tumor suppressor genes emerging from the analysis, CASP3 and IL5RA, were sequenced in 10 and 16 candidate cases, respectively. However, no mutations were found, pointing to a potential haploinsufficiency effect of these genes, considering their reduced expression in cases with deletions. This work thus describes differences and similarities in the landscape of genomic aberrations in the DLBCL subgroups in a large collection of cases, confirming already known targets, but also discovering novel copy number changes with possible pathogenetic relevance.
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Sex, Age
View Samples