Huntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on tissue samples from the cortex of 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
No sample metadata fields
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Corpus Striatum tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Cerebral Cortex tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Liver tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesWe profiled the global gene expression of human primary fetal lung fibroblasts (HFL-1) at different stages while they were undergoing replicative senescence
Bioinformatic framework for analysis of transcription factor changes as the molecular link between replicative cellular senescence signaling pathways and carcinogenesis.
Cell line
View SamplesFor most multigenic disorders, clinical manifestation (penetrance) and presentation (expressivity) are likely to be an outcome of genetic interaction between multiple susceptibility genes. Here, using gene knockouts in mice we evaluated genetic interaction between loss of Ret and loss of Sema3d, two Hirschsprung disease (HSCR) susceptibility genes. We intercrossed Ret and Sema3d double null heterozygotes to generate mice with the nine possible genotypes and assessed survival by counting various genotypes, myenteric plexus development by acetylcholinesterase (AchE) staining and embryonic day 12.5 (E12.5) gut transcriptome by RNA-sequencing. Survival rates of Ret wildtype, null heterozygote and null homozygote mice at E12.5, birth and weaning were not influenced by the genotypes at Sema3d locus and vice-versa. Loss of myenteric plexus was observed only in all Ret null homozygotes, irrespective of the genotypes at Sema3d locus, and Sema3d null heterozygote and homozygote mice had normal gut innervation. As compared to wildtype mice gut gene expression, loss of Ret in null homozygotes led to differential expression of ~300 genes, whereas loss of Sema3d in null homozygotes had no major consequence and there was no evidence supporting major interaction between the two genes influencing gut transcriptome. Overall, given the null alleles and phenotypic assays used, we did not find evidence for genetic interaction between Ret and Sema3d affecting survival, myenteric plexus formation or gut transcriptome. Overall design: poly-A RNA-seq in embryonic day 12.5 mouse gut from 3 wildtype males, 3 wildtype females, 3 Ret null homozyogote males, 3 Ret null homozyogote females, 3 Sema3d null homozyogote males, 3 Sema3d null homozyogote females, 3 Ret-Sema3d double null homozyogote males, 3 Ret-Sema3d double null homozyogote females
Testing the Ret and Sema3d genetic interaction in mouse enteric nervous system development.
Sex, Specimen part, Cell line, Subject
View SamplesNotch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).
Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.
Sex, Age, Specimen part
View SamplesMastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor activity. Lewis lung carcinoma (LLC) cells are mastic oil-susceptible cells and were used in this work to study the effects of mastic oil at the transcriptomic level.
A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival.
Cell line
View Samples