Experience-dependent plasticity (EDP) is essential for anatomical and functional maturation of sensory circuits during development and can be readily studied is the rodent barrel cortex. Using this model we aimed to uncover changes on the transcriptome level and applied RNA sequencing upon altered sensory experience in juvenile mice in a cortical column and layer specific manner. From column- and layer-specific barrel cortical tissue, high quality RNA was purified and sequenced. The current dataset entails an average of 50 million paired-end reads per sample, 75 base pairs in length. Overall design: Wild type mice were deprived of their C-row whiskers from P12 until P23-P24, after which acute brain slices were prepared and tissues were excised from L2/3 and L4 from specific barrel columns. RNA isolated from these tissue sections was then subjected to RNA-sequencing.
Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Sex, Specimen part
View SamplesIncreasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation. Notably, the predictive power of an Ad-VEGF-A164 mouse model to drive a stromal response with similarities to a wound healing response shows relevance for human cancer and was used to generate stromal signatures. We have developed gene signatures for 3 stromal states and leveraged the data from multiple large cohort bioinformatics studies of gastric cancer (TCGA, ACRG) to further understand how these relate to the dominant patient phenotypes identified by previous bioinformatics efforts. We have also designed multiplexed IHC assays that robustly represent the vascular and immune diversity in gastric cancer. Finally, we have used this methodology to arrive at a hypothesis of how angiogenesis and immunotherapy may fit into the experimental approaches for gastric cancer treatments.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Sex, Specimen part
View SamplesIncreasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Specimen part
View SamplesOT-1 Transgenic CD8 T-cells were isolated from spleens of WT, PKC theta KO, and p50 cRel DKO mice. The T-cells were either cultured with non-pulsed DC (WT only and signified as "WT - UN") or with BMDCs pulsed with the OVA peptide SIINFEKL (N4) (WT, PKC theta KO, and p50 cRel DKO and signified as 'genotype - N4') at a ratio of 1:10 (DC:T-cell) for 18 hours. DCs then were depleted from the culture and RNA was made from the T-cells to measure gene expression at the early / late stage of T-cell activation
NF-κB is crucial in proximal T-cell signaling for calcium influx and NFAT activation.
Specimen part
View SamplesGene expression changes were analyzed in U251 GBM cells after downregulation of MPS1 by RNA interference technology at different time points
Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Specimen part
View SamplesTransition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. Embryonic stem cells (ESC) strongly express Dido3, whose C-terminal truncation impedes ESC differentiation while retaining self-renewal. We show that Dido3 binds to its gene locus via H3K4me3 and RNA pol II and, at differentiation onset, induces expression of its splice variant Dido1, which then leads to Dido3 degradation and downregulation of stemness genes. We propose that Dido isoforms act as a switchboard to regulate genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation.
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Specimen part
View SamplesWe used Affymetrix expression arrays to determine changes in gene expression associated with activation of human NK cells mediated through treatment with cytokines IL-2, IL-12 and IL-18 over a 24 hour period.
PRDM1/Blimp-1 controls effector cytokine production in human NK cells.
Sex, Age, Specimen part
View SamplesIn neural stem cells, stimulation of the death receptor CD95 does not trigger apoptosis but resulted in increased stem cell survival and neuronal specification via activation of the Src /PI3K /AKT/mTOR signalling pathway. To further characterize CD95-dependent neural stem cell survival and differentiation we used conventional gene expression profiling combined with translation state array analysis. Mouse neural stem cells grown in neurosphere cultures were stimulated with a trimerized CD95L construct (CD95L-T4) and total as well as polysomal bound RNA was isolated 48 hours after stimulation and analysed by microarrays. CD95L-T4 treatment induced a global increase in ribosome-bound mRNA and protein translation as well as changes on genes involved in neurogenesis, protein synthesis and transcription factors.
The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair.
Sex, Treatment
View Samples