We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis.
Subgingival bacterial colonization profiles correlate with gingival tissue gene expression.
Specimen part
View SamplesWe examined gene expression signatures in healthy and diseased gingival tissues in 90 patients. Analysis of the gingival tissue transcriptome in states of periodontal health and disease may reveal novel insights of the pathobiology of periodontitis.
Transcriptomes in healthy and diseased gingival tissues.
Specimen part
View SamplesLiquid biopsy profile which can screen for early CRC. We aimed to depict the profile of early stage CRC as well as for advanced adenomas by combination of current molecular knowledge with microarray technology, using efficient circulating free RNA purification from blood and RNA amplification technologies.
Feasibility of Unbiased RNA Profiling of Colorectal Tumors: A Proof of Principle.
Sex
View SamplesPeriodontal infections have been associated with systemic inflammation and risk for atherosclerosis and vascular disease. We investigated the effects of comprehensive periodontal therapy on gene expression of peripheral blood monocytes. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis, and cell signaling. We concluded that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect.
Periodontal therapy alters gene expression of peripheral blood monocytes.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis.
Specimen part, Disease, Cell line, Treatment
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 AML
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 B-ALL
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of several AML cell lines
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View SamplesFBXW7 modulates stress response by post-translational modification of HSF1 HSF1 orchestrates the heat-shock response upon exposure to heat stress and activates a transcriptional program vital for cancer cells. Genes positively regulated by HSF1 show increeased expression during heat shock while their expression is reduced during recovery. Genes negatively regulated by HSF1 show the opposite pattern. In this study we utilized the HCT116 FBXW7 KO colon cell line and its wild type counterpart to monitor gene expression changes during heat shock (42oC, 1 hour) and recovery (37oC for 2 hours post heat shock) using RNA sequencing. These results revealed that the heat-shock response pathway is prolonged in cells deficient for FBXW7. Overall design: Whole RNA was extracted from 1 million HCT116 WT or FBXW7KO cells using the RNAeasy kit (Qiagen) according to the manufacturer’s protocol. Poly-A+ (magnetic oligodT-containing beads (Invitrogen)) or Ribominus RNA was used for library preparation. cDNA preparation and strand-specific library construction was performed using the dUTP method. Libraries were sequenced on the Illumina HiSeq 2000 using 50bp single-read method. Differential gene expression analysis was performed for each matched recovery versus heat-shock pairs, separately in each biological replicate and cell line (WT or KO). Two types of comparisons were tested: (a) WT recovery vs WT heat shock, (b) FBXW7 KO recovery vs heat shock.
FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification.
No sample metadata fields
View SamplesNext generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of normal cells (CD34+) from different donors
Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.
No sample metadata fields
View Samples