Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues. Overall design: 6 samples in total: 3 control, 3 siRNA MCM7
Resting cells rely on the DNA helicase component MCM2 to build cilia.
Specimen part, Cell line, Treatment, Subject
View SamplesMinichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues. Overall design: 6 samples in total: 3 control, 3 siRNA MCM2
Resting cells rely on the DNA helicase component MCM2 to build cilia.
Specimen part, Cell line, Treatment, Subject
View SamplesAbout 50% of human malignancies exhibit unregulated signalling through the Ras-ERK1/2 (ERK) pathway, as a consequence of activating mutations in members of Ras and Raf families. However, the quest for alternative Ras-ERK pathway-directed therapies is desirable. Upon phosphorylation ERK dimerize. We had previously demonstrated that dimerization is essential for ERK extranuclear but not nuclear signaling. Furthermore, by molecular biology approaches, we showed that specifically inhibiting ERK extranuclear component, by impeding ERK dimerization, is sufficient for curtailing tumor progression. Here, we have identified a small molecule inhibitor for ERK dimerization in vitro and in vivo that, without affecting ERK phosphorylation, prevents tumorigenesis driven by Ras-ERK pathway oncogenes, both in cellular and animal models. Importantly, this compound is unaffected by resistance-acquisition processes that hamper “classical” Ras-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two novel concepts in cancer therapy: 1) The blockade of sublocalization-specific sub-signals, rather than total signals, as a means of effectively counteracting oncogenic Ras-ERK signaling. 2) Targeting regulatory protein-protein interactions such as dimerization, rather than catalytic activities, within a signaling route, as an approach for producing effective anti-tumoral agents. Strategies aimed at preventing aberrant flux through this route remain an attractive option for therapeutic intervention in cancer. In this respect, drugs inhibiting the kinase activities of BRaf and MEK have yielded promising results. Overall design: A375p cells treated with10 µM of either DEL22379, SCH772984 or DMSO as a control for two hours. mRNA from A375p cells was extrated using RNeasy mini kit (Qiagen, Germany) according to the manufacturer''s instructions. Cells were previously treated with10 µM of either DEL22379, SCH772984 or DMSO as a control for two hours.
Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes.
No sample metadata fields
View SamplesNatural Killer (NK) cells are the first lymphocyte population to reconstitute early after non myelo-ablative and T cell-replete haploidentical hematopoietic stem cell transplantations (h-HSCTs) with post-transplant infusion of cyclophosphamide. The present study characterizes the transient and predominant expansion starting from the 2nd week after h-HSCT of a donor-derived unconventional subset of CD56dim/CD16neg (uCD56dim) NK cells expressing remarkable high levels of NKG2A and low levels of NKp46. Both transcription and phenotypic profiles indicated that uCD56dim NK cells are a distinct NK cell subpopulation with features of late differentiation, yet retaining proliferative capability and functional plasticity to generate conventional CD56bright/CD16pos NK cells in response to IL-15 plus IL-18. uCD56dim NK cells represent by far the largest NK cell subset detectable in the following 7 weeks after h-HSCT and they also express high levels of the activating receptors NKGD and NKp30 as well as of the lytic granules Granzyme-B and Perforin. Nonetheless, uCD56dim NK cells displayed a defective cytotoxicity that could be reversed by blocking the inhibitory receptor CD94/NKG2A. These data open new important perspectives to better understand the ontogenesis/homeostasis of human NK cells and to develop a novel immune-therapeutic approach by targeting the inhibitory NKG2A check point, thus enhancing NK cell alloreactivity early after h-HSCT.
The early expansion of anergic NKG2A<sup>pos</sup>/CD56<sup>dim</sup>/CD16<sup>neg</sup> natural killer represents a therapeutic target in haploidentical hematopoietic stem cell transplantation.
Specimen part
View SamplesThe RAG1 endonuclease, together with its cofactor RAG2, is essential for V(D)J recombination but is a potent threat to genome stability. The sources of RAG1 mistargeting and the mechanisms that have evolved to suppress it are poorly understood. Here, we report the surprising finding that RAG1 binds to thousands of sites in the genome of developing lymphocytes, primarily at active promoters and enhancers. The genome has responded by reducing the abundance of "cryptic" recombination signals near sites of RAG1 binding. This depletion operates specifically on the RSS heptamer, with nonamers enriched at RAG1 binding sites. Reversing this RAG-driven depletion of cleavage sites by insertion of strong recombination signals creates an ectopic hub of RAG-mediated V(D)J recombination and chromosomal translocations. Our findings delineate rules governing RAG binding in the genome, identify areas at risk of RAG-mediated damage, and highlight the evolutionary struggle to accommodate programmed DNA damage in developing lymphocytes. Overall design: RNA-seq profiles of mouse thymocytes
RAG Represents a Widespread Threat to the Lymphocyte Genome.
No sample metadata fields
View SamplesGene expression profiles of 8 samples of CD34+derived normal promyelocytes
Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: Focus on DNA repair genes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part, Time
View SamplesIn embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part, Time
View SamplesIn embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part
View SamplesThe goal of this study was to determine how decreased mitochondrial citrate export influences gene expression in Drosophila larvae. RNA was isolated from Drosopohila sea mutants, which exhibiti decreased mitochondrial citrate transport activity, and a genetically-matched control strain during mid-L3 development. Overall design: Larvae were collected as described in Li, H., Tennessen, J. M. Preparation of Drosophila Larval Samples for Gas Chromatography-Mass Spectrometry (GC-MS)-based Metabolomics. J. Vis. Exp. (136), e57847, doi:10.3791/57847 (2018). RNA was purified from staged mid-L3 larvae using a RNeasy Mini Kit (Qiagen). Sequencing was performed using an Illumina NextSeq500 platform with 75 bp sequencing module generating 41 bp paired-end reads. After the sequencing run, demultiplexing was performed with bcl2fastq v2.20.0.422.
A <i>Drosophila</i> model of combined D-2- and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate export with oncometabolite accumulation.
Subject
View Samples