Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates and redox potential required for the generation of biomass. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. SIRT3 loss promotes a metabolic profile consistent with high glycolysis required for anabolic processes in vivo and in vitro. Mechanistically, SIRT3 mediates metabolic reprogramming independently of mitochondrial oxidative metabolism and through HIF1a, a transcription factor that controls expression of key glycolytic enzymes. SIRT3 loss increases reactive oxygen species production, resulting in enhanced HIF1a stabilization. Strikingly, SIRT3 is deleted in 40% of human breast cancers, and its loss correlates with the upregulation of HIF1a target genes. Finally, we find that SIRT3 overexpression directly represses the Warburg effect in breast cancer cells. In sum, we identify SIRT3 as a regulator of HIF1a and a suppressor of the Warburg effect.
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.
Specimen part
View SamplesThe goal of this study was to identify potential genes regulated by ERG
Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate.
No sample metadata fields
View SamplesIdentifying novel candidate biomarker gene differentially expressed in the peripheral blood cells of patients with early stage acute myocardial infarction using microarray as a high throughput screening technology.
Novel genes detected by transcriptional profiling from whole-blood cells in patients with early onset of acute coronary syndrome.
Specimen part, Disease, Time
View SamplesSalp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in immunomodulation in different murine models in which these cells participate. The fate of the CD4 T cells activated in the presence of the immunosuppressor or its long-term effects on these cells are however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished antibody production against specific and unrelated antigens. Transcriptionally, the salivary protein provokes a sharp acute effect that includes known activation factors, such as Il2, Cd44, or Il2ra, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with the immunomodulatory protein does not result in B cell anergy or the generation of myeloid suppressor cells. However, the immunomodulatory protein induces the increased expression of the ectoenzyme, CD73, in regulatory T cells. Our results suggest that the specific regulation of CD73, a known modulator of adenosine levels, by Salp15 results in long-term cross-antigenic immunomodulatory effects. Overall design: Genome-wide changes in gene Expression in mouse CD4 T cells activated with anti-CD3/CD28 in the presence of 25 ug/mL of the tick salivary protein, Salp15 or its inactive control (Salp15deltaP11) were generated by RNAseq.
The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant.
Age, Specimen part, Cell line, Treatment, Subject, Time
View SamplesWe postulate here that the two singular characteristics of the mitochondrial oxidative phosphorylation system—the integration of three potentially antagonistic functions in the same structure and the double genetic origin of the components that assemble together in these molecular machines—make the evolution of an optimal system impossible. As a consequence the system is intrinsically mismatched and has to be continuously monitored, Adjusted and regulated in order to achieve the necessary and variable performance. Systematic transcriptomic, Metabolomic and biochemical evaluation of animals with identical nuclear DNA but different mtDNA haplotype strongly support the existence of intrinsic mismatch and reveals profound lifelong metabolic consequences on reactive oxygen species generation, Insulin signaling, Tendency towards obesity, And healthy ageing parameters, Including telomere atresia Overall design: Transcriptome analysis of conplastic mice versus WT mice in Liver and Heart tissues Conplastic strains were obtained after 10 generations of backcrossing to create a new line harboring the nuclear genome of one strain and the mtDNA of another (C57BL/6 and NZB were purchased from Harlan Laboratories).
Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.
No sample metadata fields
View SamplesOne of the challenges of current research in prostate cancer is to improve the differential non-invasive diagnosis of prostate cancer (PCa) and benign prostate hyperplasia (BPH). Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer patients exhibit genuine and differential physical and biological properties. Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in prostate cancer.
Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer.
Specimen part
View SamplesMM1.S cells stably transduced with control or b-catenin shRNA were established. Total RNA was isolated from 5x 10^6 cells of each in triplicate.
Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression.
Cell line
View SamplesThis GEO submission includes RNAseq raw data (fastq) and processed data (using ASpli 1.6.0) from samples obtained in the wild type and the single prefoldin4 and lsm8 mutants in three different environmental conditions as well as in the triple prefoldin2 prefoldin4 prefoldin6 mutant growth in standard conditions. Overall design: 28 biological samples from 10 different conditions and genopypes, including the Col-0 WT in each condition (standard, cold and salt conditions)
Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis.
Specimen part, Subject
View SamplesMetabolism in cancer serves to provide energy and key biomolecules that sustain cell growth, a process that is frequently accompanied by decreased mitochondrial use of glucose. Importantly, metabolic intermediates including mitochondrial metabolites are central substrates for post-translational modifications at the core of cellular signalling and epigenetics. However, the molecular means that coordinate the use of mitochondrial metabolites for anabolism and nuclear protein modification are poorly understood. Here, we unexpectedly found that genetic and pharmacological inactivation of Pyruvate Dehydrogenase A1 (PDHA1), a subunit of pyruvate dehydrogenase complex (PDC) that regulates mitochondrial metabolism16 inhibits prostate cancer development in different mouse and human xenograft tumour models. Intriguingly, we found that lipid biosynthesis was strongly affected in prostate tumours upon PDC inactivation. Mechanistically, we found that nuclear PDC controls the expression of Sterol regulatory element-binding transcription factor (SREBF) target genes by mediating histone acetylation whereas mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated effort to sustain anabolism. In line with the oncogenic function of PDC in prostate cancer, we find that PDHA1 and the PDC activator, Pyruvate dehydrogenase phospatase 1 (PDP1), are frequently amplified and overexpressed at both gene and protein level in these tumours. Taken together, our findings demonstrate that both mitochondrial and nuclear PDC sustains prostate tumourigenesis by controlling lipid biosynthesis thereby pointing at this complex as a novel target for cancer therapy.
Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.
No sample metadata fields
View SamplesStabilized Alpha-Helix peptides of BCL9 HD2 (SAH-BCL9) block BCL9 and B9L interactions with beta-catenin and specifically downregulate Wnt target gene expression.
Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling.
Specimen part, Cell line, Treatment
View Samples