Nucleotides triphosphates are extracellular messengers binding to specific plasma membrane receptors (P2Rs) that modulate responses as different as proliferation, differentiation, migration or cell death on several cell types including hematopoietic stem cells. Little and controversial information is available on the role of extracellular nucleotides in human mesenchimal stem cells (hMSCs). In this study, we assessed whether P2Rs are expressed and functional in bone marrow-derived hMSCs. Our results demonstrated, at the mRNA and protein level, the expression of all P2X and P2Y receptor subtypes identified so far. P2R activation by their natural ligands adenosine triphosphate (ATP) and uridine triphosphate (UTP) induced in hMSCs, intracellular Ca2+ concentration changes, plasma membrane depolarization and permeabilization. hMSCs were resistant to the cytotoxic effects of high dose ATP despite the expression of permeabilizing P2Rs as demonstrated by the lack of morphological changes, significant release of intracellular markers of cell death or modification of the mitochondrial network. Gene expression profiling revealed the down-regulation of cell proliferation genes whereas genes involved in cell migration and cytokine production were strongly up-regulated by ATP. Functional studies confirmed the inhibitory activity of ATP on proliferation of hMSCs and clonogenic progenitors. Moreover, ATP exerted a chemotactic effect on hMSCs and increased their migration in response to the chemokine CXCL12. Finally, whereas ATP did not affect T-cell inhibitory activity of hMSCs, the nucleotide increased the production of pro-inflammatory cytokines by hMSCs. Thus, our data show that purinergic signaling modulates hMSC functions and point to a role for extracellular nucleotides on hMSCs biology.
Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines.
No sample metadata fields
View SamplesIn the present study, we investigated whether, and to what extent, P2Rs and their ligands are involved in the regulation of AML cells. Our findings show that AML blasts express several receptors belonging to the P2X and P2Y family. Although different samples respond differently to ATP and UTP stimulation (reflecting the variability intrinsic to the group of acute myeloid leukemias), all the tested samples appear to be responsive to purinergic signalling, as demonstrated by intracellular calcium mobilization.
Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice.
Specimen part
View SamplesUnraveling complexity of DNA methylome is essential to decipher DNA methylation mechanism in life. However, this has been subjected to technological constraints to balance between cost and accurate measurement of the DNA methylation level. In this study, by innovatively introducing C-hydroxylmethylated adapters, we have developed MeDIP-Bisulfite sequencing (MB-seq), which could obtain DNA methylome of repertoire CpGs at single-base resolution. We found MB-seq only costs 10% of MethylC-seq, but covers 85% of total CpGs in human genome. Unlike absolute methylation levels determined by MethylC-seq and RRBS, MB-seq presented relative methylation levels that are linearly inflated. This has enlightened us to develop a MB-seq corresponding correction method for methylation level based on ridge regression, which integrates the data of MB-seq and RRBS to predict the methylation level of total 28.2 million CpGs on human genome with high accuracy (Pearson correlation coefficient, PCC=0.90). Moreover, by employing MB-seq, we generated the DNA methylome of an ovarian epithelial cell line (T29) and its oncogenic counterpart (T29H), respectively. After ridge regression, we identified 131,790 differential methylation regions (DMRs) with high accuracy between T29 and T29H, far more than 7,567 obtained from RRBS. Taken together, our result demonstrated that the MB-seq combined with ridge regression is a wide applicable approach for profiling of DNA methylome. Overall design: Total RNAs were extracted from T29 and T29H with RNeasy Mini Kit (QIAGEN, Germany). RNA quality was quality-controlled by Bioanalyser 2100 (RNA nano kits, Agilent). mRNA-Seq libraries were generated from total RNA with polyA+ selection of mRNA using the TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA), and then subjected to transcriptome sequencing on the Illumina Hiseq 2000
MBRidge: an accurate and cost-effective method for profiling DNA methylome at single-base resolution.
No sample metadata fields
View SamplesBy using NGS-derived retinal transcriptome profiling (RNA-seq) to compare the gene expression profiling between 4 differently treated NPC cells Overall design: Examination of different gene expression in EBV-miRNA-BART1/3/7 lentivirus and their control infected nasopharyngeal carcinoma cells.
Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.
Specimen part, Cell line, Subject
View SamplesAnalysis of peripheral blood mononuclear cells (PBMCs) separated from whole blood of healthy male subjects
Effects of exercise on gene expression in human peripheral blood mononuclear cells.
No sample metadata fields
View SamplesRelative expression levels of mRNAs in chicken cecal epithelia experimentally infected with Eimeria tenella were measured at 4.5 days post-infection. Two weeks old chickens were uninfected (negative control) or were orally inoculated with sporulated oocysts of Eimeria tenella. Cecal epithelia samples were collected from >12 birds in infected or uninfected group at 4.5 d following infections, in which samples from 4 birds were pooled together to form a total 3 biological replicates in each group. Parasite merozoites were also collected from four infected chickens at 5 d after infections. Uninfected control samples, merozoites and infection group samples were selected for RNA extraction and hybridization on Affymetrix microarrays.
Transcriptome analysis in chicken cecal epithelia upon infection by Eimeria tenella in vivo.
No sample metadata fields
View SamplesAffymetrix Human Gene 2.0 ST microarray (ThermoFisher Scientific, Waltham, MA, USA) was used to select differentially expressed genes.
BRD2 induces drug resistance through activation of the RasGRP1/Ras/ERK signaling pathway in adult T-cell lymphoblastic lymphoma.
Sex, Age
View SamplesTo gain insight into the role of testosterone in modulating hepatic fat accumulation, we collected liver tissues from high fat diet-fed intact male pigs, castrated male pigs, and castrated male pigs with testosterone replacement. RNA-Seq was employed to profile hepatic gene expression in pigs with different testosterone levels. Overall design: Liver mRNA profiles of intact male pigs fed a HFC diet, castrated male pigs fed a HFC diet, and castrated male pigs treated with testosterone fed a HFC diet were generated by deep sequencing, using Illumina HiSeq 2000.
Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet.
Specimen part, Cell line, Subject
View SamplesMammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. Through single-cell RNA-sequencing (RNA-seq), we report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos. Based on single nucleotide variants (SNVs) in blastomere mRNAs and paternal-specific SNPs, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25-53%). By weighted gene co-expression network analysis (WGCNA), we find that each developmental stage can be concisely delineated by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation, and metabolism in a step-wise fashion from cleavage to morula. Cross-species comparisons reveal that the majority of human stage-specific modules (7 out of 9) are remarkably preserved, only to diverge in developmental specificity and timing in mice. We further identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely key players in driving mammalian preimplantation development. Collectively, we demonstrate that mammalian preimplantation development is orchestrated by evolutionarily conserved genetic programs that diverge in developmental timing. Our results provide a valuable resource to dissect gene regulatory mechanism underlying progressive development of early mammalian embryos. Overall design: single-cell RNA-seq of human and mouse blastomeres
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.
No sample metadata fields
View SamplesUsing Tbx18Cre to target embryonic DP precursors, we ablate Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target.
Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors.
Specimen part
View Samples