This SuperSeries is composed of the SubSeries listed below.
Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus.
Sex, Specimen part, Treatment
View SamplesPreclinical work has long focused only on male animals, even though sexual divergence in both baseline behaviors and drug responses clearly impact treatment outcomes in patients. Psychiatric disorders are notably divergent, with males showing higher prevalence of ADHD and ASD, and females GAD and MDD. This divergence is reflected in quantitative differences in subclincal behaviors. The Noradrenergic neurotransmitter system is targeted by many psychiatric drugs, but is relatively uncharacterized at a molecular level. We developed a mouse to profile these neurons, defining their both a baseline transcriptome, including druggable receptors, and their molecular response to stimulation. We also discovered a remarkable sexual divergence in their gene expression, including functionally increased expression of the EP3 receptor in females a difference that can be used to modulate stress-induced anxiety in a sex specific manner. These findings underscore the need to conduct preclinical studies in a manner balanced for sex, and suggest that baseline differences in noradrenergic neurons could underlay sexually divergent behaviors.
Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus.
Sex, Specimen part
View SamplesIdentification of filamin-A as a target for insulin and IGF1 action.
Genome-Wide Analyses Identify Filamin-A As a Novel Downstream Target for Insulin and IGF1 Action.
Cell line, Treatment
View SamplesTwo ELK-1 overexpressing cells were generated from CSES7 cell line and compared to WT CSES7.
Human pluripotent stem cells with distinct X inactivation status show molecular and cellular differences controlled by the X-Linked ELK-1 gene.
Sex, Specimen part, Cell line, Treatment
View SamplesImatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.
Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.
No sample metadata fields
View SamplesThe aim of this experiment was to identify the genes involved in the detoxification of the toxic pollutant and explosive compound 2,4,6-trinitrotolune (TNT). Fourteen-day-old, liquid culture grown, Arabidopsis seedlings, ecotype Col0 (NASC stock code N1093), were dosed with 60 uM TNT dissolved in 60 ul dimethyl formamide (DMF) solvent, or 60 ul DMF only. After six hours, RNA was extracted and used for the microarray analysis. Further details and characterisation of glucosyltransferases identified using this method are presented in citation below.
Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases.
Specimen part, Treatment
View SamplesTemporal genome profiling of DSS colitis
Temporal genomewide expression profiling of DSS colitis reveals novel inflammatory and angiogenesis genes similar to ulcerative colitis.
No sample metadata fields
View SamplesBackground
Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype.
Specimen part
View SamplesGold is widely considered to be a biologically inert element; however, it can elicit a profound biological response in plants. Plants can be exposed to significant levels of this precious metal in the environment from naturally occurring sources, as the result of mining activities or more recently resulting from the escalating use of nanoparticles in industry. In this microarray study we have investigated the gene expression response of Arabidopsis thaliana (Arabidopsis) to gold. Although the uptake of metal cations by plant transporters is well characterised, little is known about the uptake of gold, which exists in soil predominantly in a zero-valent state (Au0). We used this study to monitor the expression of candidate genes involved in metal uptake and transport. These show the down-regulation of a discreet number of genes known to be involved in the transport of copper, cadmium, nickel and iron.
Arabidopsis Glutathione Transferases U24 and U25 Exhibit a Range of Detoxification Activities with the Environmental Pollutant and Explosive, 2,4,6-Trinitrotoluene.
Specimen part, Treatment
View SamplesIn order to elucidate the molecular mechanisms underlying individual variation in sensitivity to ethanol we profiled the prefrontal cortex transcriptomes of two inbred strains that exhibit divergent responses to acute ethanol, the C57BL6/J (B6) and DBA/2J (D2) strains, as well as 27 members of the BXD recombinant inbred panel, which was derived from a B6 x D2 cross. With this dataset we were able to identify several gene co-expression networks that were robustly altered by acute ethanol across the BXD panel. These ethanol-responsive gene-enriched networks were heavily populated by genes regulating synaptic transmission and neuroplasticity, and showed strong genetic linkage to discreet chromosomal loci. Network-based measurements of node importance identified several hub genes as established regulators of ethanol response phenotypes, while other hubs represent novel candidate modulators of ethanol responses.
Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.
Sex, Specimen part
View Samples