The goal of the study was to evaluate the influence of mutations in MLK4 on the protein function and the process of tumorigenesis in colorectal cancers. Biochemical data imply that a majority of MLK4 mutations in colon cancer are loss-of-function, including, E314K and Y330H mutations.
Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis.
Specimen part, Cell line
View SamplesMelanomas are often infiltrated by activated inflammatory cells. Thus, melanoma cells are very likely stimulated by inflammatory cytokines.
Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.
Cell line
View SamplesA specialized population of memory CD8+ T-cells resides in the epithelium of the respiratory tract to maintain protection against recurring infections. These cells express CD69 and the integrin 7 (CD103) and correspond to tissue resident memory T-cells (TRM) also described in intestine, liver and brain. A less well characterized population of CD103- CD8+ T-cells also resides in lungs and expresses markers characteristic of effector memory T-cells (TEM). We determined the transcriptional profiles of these memory CD8+ T-cell subsets retrieved from human lung resection samples and compared these with corresponding T-cell populations from peripheral blood of the same individuals. Our results demonstrate that each of the populations exhibits a distinct transcriptional identity. We found that the lung environment has a major impact on gene expression profiles. Thus, transcriptomes from CD103+ and CD103- subsets from lungs are much more resemblant to one another than to those from CD103+ or CD103- memory CD8+ T-cells from blood. TRM express specific sets of chemokine receptors, in accordance with their unique migratory properties. Furthermore, these cells constitutively express cytokine and cytotoxic genes for immediate effector function and chemokines to attract auxiliary immune cells. At the same time, multiple genes encoding inhibitory regulators are also expressed. This suggests that rapid ability to unleash effector functions is counterbalanced by programmed restraint, a combination that may be critical in the exposed but delicate tissue of the lung. Comprehensive sets of transcription factors were identified that characterize the memory CD8+ populations in the lungs. Prominent among these were components of the Notch pathway. Using mice genetically lacking expression of the NOTCH1 and NOTCH2 receptors in T-cells, we demonstrated that Notch controls both the number of lung TRM as well as the function of lung TEM. Our data illustrate the adaptation of lung resident T-cells to the requirements of the respiratory epithelial environment. Defining the molecular imprinting of these cells is important for rational vaccine design and may help to improve the properties of T-cells for adoptive cellular therapy.
Programs for the persistence, vigilance and control of human CD8<sup>+</sup> lung-resident memory T cells.
Specimen part, Subject
View SamplesIncreased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and -hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum.SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN- ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.
Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity.
No sample metadata fields
View SamplesWe comprehensively explored Fas expression (protein and mRNA) and function in lymphocyte activation, apoptosis, proliferation and transcriptome, using flow cytometry, [3H]-thymidine incorporation and microarray analysis in PBMC from HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) patients.
A Fas<sup>hi</sup> Lymphoproliferative Phenotype Reveals Non-Apoptotic Fas Signaling in HTLV-1-Associated Neuroinflammation.
Specimen part, Disease stage, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part, Cell line, Race, Time
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference to the acetaminophen toxicity, which is initiated by ROS, in Pml wt and Pml KO mice.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesThe Pml gene is essential to the formation of PML nuclear bodies, domains which have been associated with various functions such as apoptosis/senescence, DNA repair and cell proliferation( Lallemand-Breitenbach 2010). PML-NBs formation is regulated by cellular stress including oxidative stress(Jeanne 2010, de The 2012). To investigate the role of PML in ROS response in vivo, we analyse the expression difference betweem Pml wt and Pml KO under fasted condition, which easily up-regulate ROS in BALB/cByJ background
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Age, Specimen part
View SamplesPML nuclear bodies (NBs) recruit partner proteins -including p53 and its regulators- controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB-biogenesis. Yet, physiological links between PML and oxidative stress response in vivo remain unexplored. Here we identify PML as a reactive oxygen species (ROS) sensor. Pml-/- cells accumulate ROS, while PML expression decreases ROS levels. Unexpectedly, Pml-/- embryos survive acute glutathione depletion. Moreover, Pml-/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml-/- animals fail to properly activate oxidative stress-responsive p53 targets, while NRF2 response is accelerated. Finally, in an oxidative stress-prone background, Pml-/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal anti-oxidant properties, but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB-biogenesis, PML therefore couples ROS-sensing to p53 responses, shedding a new light on PML role in senescence or stem cell biology.
PML is a ROS sensor activating p53 upon oxidative stress.
Sex, Cell line, Race, Time
View SamplesThe epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NFkB in EMT of human primary small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor ß (TGFß) activated NFkB/RELA proto-oncogene, NFkB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFß-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFß stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified Wnt, cadherin, and NFkB signaling as the most prominent TGFß-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to Wnt, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: (1) the Wnt/ß-catenin morphogen pathway, (2) the JUN transcription factor, and (3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating Wnt dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFß-induced WNT5B expression and downstream activation of the Wnt target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of Wnt morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops. Overall design: RNA-seq transcriptome profiling of TGF-Beta stimulated RelA wildtype and knock-down cells
The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells.
Specimen part, Subject
View Samples