This SuperSeries is composed of the SubSeries listed below.
Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome.
Specimen part
View SamplesDifferentiation of hematopoietic stem cells (HSCs) is regulated by a concert of different transcription factors (TFs). A disturbed function of TFs can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth Factor Independence 1b (Gfi1b) is a repressing TF with a key role in quiescence of HSCs and emergence and maturation of erythrocytes and platelets. Here, we show that low expression of GFI1B in blast cells is associated with inferior prognosis of MDS and AML patients. Using mouse models with either reduced expression or conditional deletion of Gfi1b, crossed with a mouse model reflecting human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly enhanced stemness of leukemic cells with upregulation of genes fundamentally involved in leukemia development. On a molecular level, we found that loss of Gfi1b not only increased the levels of reactive oxygen species (ROS) but also induced gene expression changes of key AML pathways such as the p38/AKT pathway. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS/AML development.
Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome.
Specimen part
View SamplesThis experiment was designed to study if there are differences in gene expression in the adipose tissue of women affected by polycystic ovary syndrome (PCOS) compared to non-hyperandrogenic women. PCOS is the most common endocrinopathy in women of reproductive age, and is characterized by hyperandrogenism and chronic anovulation. This disease is frequently associated with obesity, insulin resistance, and defects in insulin secretion, predisposing these women to type 2 diabetes, atherosclerosis, and cardiovascular disease.
Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome.
No sample metadata fields
View SamplesMolecular profiling of 159 lung cancers of different histological subtypes. A primary objective is to identify gene expression differences between histological subtypes. Sample overlap exist with GSE60644
Gene Expression Profiling of Large Cell Lung Cancer Links Transcriptional Phenotypes to the New Histological WHO 2015 Classification.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesNephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these models. In this study we used an unbiased transcriptional network approach to define similarities and differences between three lupus models and human LN. Affymetrix-based expression profiles were analyzed using Genomatix Bibliosphere software and transcriptional networks were compared using the Tool for Approximate LargE graph matching (TALE). The 20 network hubs (nodes) shared between all three models and human LN reflect key pathologic processes, namely immune cell infiltration/activation, macrophage/dendritic cell activation, endothelial cell activation/injury and tissue remodeling/fibrosis. Each model also shares unique features with human LN. Pathway analysis of the TALE nodes highlighted macrophage/DC activation as a cross-species shared feature. To distinguish which genes and activation pathways might derive from mononuclear phagocytes in the human kidneys the gene expression profile of isolated NZB/W renal mononuclear cells was compared with human LN kidney profiles. Network analysis of the shared signature highlighted NFkappaB1 and PPARgamma as major hubs in the tubulointerstitial and glomerular networks respectively. Key nodes in the renal macrophage inflammatory response form the basis for further mechanistic and therapeutic studies.
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part, Disease, Subject
View SamplesExpression data from human with hypertensive nephropathy (HT)
Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis.
Specimen part
View SamplesHistidine-rich glycoprotein (HRG) is a 75 kDa heparin-binding plasma protein which has been implicated in regulation of tumor angiogenesis and growth. To exert some of its biological functions, HRG acts on macrophages.This study was performed to assess changes in gene expression in peritoneal macrophages treated with HRG using oligonucleotide microarrays
Genetic deficiency in plasma protein HRG enhances tumor growth and metastasis by exacerbating immune escape and vessel abnormalization.
Specimen part, Disease, Treatment, Time
View SamplesGene expression profiles of 75 tissue samples were analyzed representing the stepwise carcinogenic process from pre-neoplastic lesions (cirrhosis and dysplasia) to HCC, including four neoplastic stages (very early HCC to metastatic tumors) from patients with HCV infection. Gene signatures that accurately reflect the pathological progression of disease at each stage were identified and potential molecular markers for early diagnosis uncovered. Pathway analysis revealed dysregulation of the Notch and Toll-like receptor pathways in cirrhosis, followed by deregulation of several components of the Jak/STAT pathway in early carcinogenesis, then up-regulation of genes involved in DNA replication and repair and cell cycle in late cancerous stages.
Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma.
No sample metadata fields
View Samples