The objective of this study was to identify transcriptional changes differentially regulated by GDF11 stimulation compared to TGFB1
Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.
Specimen part
View SamplesAnalysis of CPEB translational regulator target mRNAs
Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance.
Age
View SamplesThe aim of this experiment is to determine Hhex targets in the presence and absence of Myc.
Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex.
Cell line
View SamplesIn a pilot experiment to reprogramme MEF into endoderm, we infected MEF with the Yamanakas factors (O: Oct4, K: Klf4, S: Sox2, M:Myc), FoxA2 (F) and Gata4 (G). Global gene expression of isolated clones was performed.
Gata4 blocks somatic cell reprogramming by directly repressing Nanog.
No sample metadata fields
View SamplesPulmonary dendritic cells are heterogenous cells comprise four distinct subsets including two conventional dendritic cell subsets, CD103+ and CD11bhiCD14lo cells, and two monocyte-derived dendritic cell subsets. Their functions in terms of migration and T cell activation are distinct, but genes regulating their features are to be determined.
Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells.
Sex, Specimen part
View SamplesERa is essential for the anti-proliferative response of breast cancer cells not only to estrogen antagonists, but also to estrogen withdrawal by means of aromatase inhibitors. We explored here one of the simplest explanation for this, consisting in the possibility that ERa may have a wide genomic function in absence of ligands. The genomic binding of ERa in the complete absence of estrogen was then studied using hormone-dependent MCF7 cells, by chromatin immunoprecipitation sequencing. From these data, 4.2K highly significant binding events were identified, which were further confirmed by comparing binding events in cells expressing ERa to cells silenced for ERa. Apo-ERa binding sites were distributed close to genes with functions associated to cell growth and epithelial maintenance and show significant overlap with binding of other transcription factors important for luminal epithelial breast cancer. Interestingly, we found that upon ERa silencing cognate gene transcription in absence of estrogen is downregulated and this is accompanied by increased H27Kme3 at ERa binding sites. RNA-Seq experiments showed that unliganded ERa controls basal transcription widely, including both coding and noncoding transcripts. Genes affected by ERa silencing can be easily functionally related to mammary epithelium differentiation and maintenance, especially when considering downregulated genes. Additional functions related to inflammatory and immune response was observed. Our data unravel unexpected actions of ERa in breast cancer cells and provide a novel framework to understand success and failure of hormone therapy in breast cancer. Overall design: Examination of unligandend estrogen receptor alpha (aERa) DNA interactions in control and aERa siRNA treated MCF7 cells.
Dissecting the genomic activity of a transcriptional regulator by the integrative analysis of omics data.
No sample metadata fields
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesTime-series analysis of response to ribosome 28s damage at gene expression level
Early Response to the Plant Toxin Stenodactylin in Acute Myeloid Leukemia Cells Involves Inflammatory and Apoptotic Signaling.
Cell line, Treatment
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesThe ZFP36L3 protein is a rodent-specific, placenta- and yolk sac-specific member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins. These proteins bind to AU-rich elements in target mRNAs, and promote their deadenylation and decay. Mice deficient in ZFP36L3 exhibited decreased neonatal survival rates, but no apparent morphological changes in the placenta or surviving offspring. Zfp36l3 is paternally imprinted, with profound parent-of-origin effects on gene expression. RNASeq of KO placental mRNA revealed many significantly affected transcripts, some of which exhibited decreased decay rates in differentiated trophoblast stem cells derived from KO blastocysts. The type 1 transferrin receptor mRNA was unexpectedly decreased in KO placentas, despite an increase in its stability. This receptor is critical for placental iron uptake from the maternal circulation, and its decrease was accompanied by decreased iron stores in the KO fetus, suggesting that this intrauterine deficiency might have deleterious consequences in later life. Overall design: Examination of gene expression differences in yolk sac tissue between wild-type and knockout mice groups with 4 biological replicates in each group
Deficiency of the placenta- and yolk sac-specific tristetraprolin family member ZFP36L3 identifies likely mRNA targets and an unexpected link to placental iron metabolism.
No sample metadata fields
View Samples