Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3’ adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127 % and 121 %, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality. Overall design: Sequencing of mRNA from C. elegans with libraries of four differing insert sizes
Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes.
Specimen part, Disease, Cell line, Subject
View SamplesJuvenile idiopathic arthritis (JIA) is the most common chronic childhood rheumatic disease in the Western world. To identify novel JIA predisposing loci, a genome-wide association study (GWAS) in 814 Caucasian JIA cases and 3058 Caucasian controls was completed. After adjusting for the most significant HLA associations, the strongest novel associations included rs6479891 (10q21, odds ratio (OR)=1.59, P=1.3x10-8) and rs10761747 (OR=1.34, P=4.0x10-5) within JMJD1C; rs12719740 (15q26, OR=1.47, P=3.3x10-7) near FAM169B; rs4688011 (3q13, OR=1.33, P=1.1x10-4) within C3orf1 and rs4254850 (4q31, OR=0.85, P=7.8x10-3) near IL15. Eleven SNPs were genotyped in Caucasian replication cohorts (1744 cases, 7010 controls) and meta-analysis continued to provide evidence for association with three of the SNPs (rs6479891, P=4.3x10-5; rs12719740, P=5.2x10-4; rs4688011, P=3.6x10-7). Analysis of expression data from 68 JIA cases and 23 controls overlapping in the GWAS cohort1 and published lymphoblastoid cell lines (LCL)2 showed cis eQTL associations for JMJD1C SNPs (P=0.01 and P=1.6x10-6, respectively), and the C3orf1 SNP (P=5.7x10-6).
Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesOur results demonstrate that targeted deletion of TAK1 inhibits muscle growth during post-natal development period. Inactivation of TAK1 also causes muscle wasting in adult mice.
TAK1 regulates skeletal muscle mass and mitochondrial function.
Specimen part
View SamplesMajor causes of lipid accumulation in liver are increased import, synthesis or decreased catabolism of fatty acids. The latter is caused by dysfunction of cellular organelle controlling energy homeostasis, i.e. mitochondria. However, peroxisomes appear to be an important organelle in lipid metabolism of hepatocytes, but little is known about their role in the development of non-alcoholic fatty liver disease (NAFLD). To investigate the role of peroxisomes next to mitochondria in excessive hepatic lipid accumulation we used the leptin resistant db/db mice on C57BLKS background, a mouse model that develops hyperphagia induced diabetes with obesity and NAFLD.
Peroxisomes compensate hepatic lipid overflow in mice with fatty liver.
Sex, Age, Specimen part
View SamplesWe profiled RNA expression in human iPSC-derived ventricular and atrial cardiomyocytes Overall design: 4 biological replicates of human iPSC-derived ventricular cardiomyocytes and 4 biological replicates of iPSC-derived atrial cardiomyocytes (from 3 individual iPSC lines)
Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.
Specimen part, Cell line, Subject
View SamplesPlant compensatory responses depends on transcriptional reprogramming. We used microarray analysis to understand the differential gene expression pattern between clipped (herbivore browsed)
Overcompensation in response to herbivory in Arabidopsis thaliana: the role of glucose-6-phosphate dehydrogenase and the oxidative pentose-phosphate pathway.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.
No sample metadata fields
View SamplesComplications due to long-term administration of immunosuppressive therapy increase the morbidity and mortality of liver transplant recipients. Discontinuation of immunosuppressive drugs in recipients spontaneously developing operational tolerance could substantially lessen this burden. However, this strategy results in the development of rejection in a high proportion of recipients who require lifelong immunosuppression. Thus, there is a need to identify predictive factors of successful drug withdrawal and to define the clinical and histological outcomes of operationally tolerant liver recipients. Methods. We enrolled 102 stable liver transplant recipients in an immunosuppression withdrawal trial in which drugs were gradually discontinued over a 6-9 month period. Patients with stable graft function and no signs of rejection in a liver biopsy conducted 12 months after cessation of immunosuppressive therapy were considered operationally tolerant. Results. Out of the 98 recipients who completed the study, immunosuppression discontinuation was successful in 41 recipients and rejection occurred in 57. Rejection episodes were mild and were resolved in all cases. Development of tolerance was independently associated with time elapsed since transplantation, recipient age, and male gender. No histological damage was apparent in protocol biopsies performed after successful drug withdrawal.
Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.
Age, Specimen part
View SamplesIn clinical organ transplantation complete cessation of immunosuppressive therapy can be successfully accomplished in selected recipients providing a proof-of-principle that allograft tolerance is attainable in humans. The intra-graft molecular pathways associated with human allograft tolerance, however, have not been comprehensively studied before. In this study we analyzed sequential liver tissue samples collected from liver recipients enrolled in a prospective multicenter immunosuppressive withdrawal clinical trial. Tolerant and non-tolerant recipients differed in the intra-graft expression of genes involved in the regulation of iron homeostasis.These results point to a critical role of iron homeostasis in the regulation of intra-graft alloimmune responses in humans and provide a set of novel biomarkers to conduct drug-weaning trials in liver transplantation.
Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation.
No sample metadata fields
View SamplesStore operated calcium entry (SOCE) downstream of T cell receptor (TCR) activation in T lymphocytes has been shown to be mediated mainly through the Calcium Release Activated Calcium (CRAC) channel. Here, we compared the effects of a novel, potent and selective CRAC inhibitor, 2,6-Difluoro-N-{5-[4-methyl-1-(5-methyl-thiazol-2-yl)-1,2,5,6-tetrahydro-pyridin-3-yl]-pyrazin-2-yl}-benzamide (RO2959), on T cell effector functions with that of a previously reported CRAC channel inhibitor, YM-58483, and a calcineurin inhibitor Cyclosporin A (CsA). Using both electrophysiological and calcium-based fluorescence measurements, we showed that RO2959 is a potent SOCE inhibitor that blocked an IP3-dependent current in CRAC-expressing RBL-2H3 cells and CHO cells stably expressing human Orai1 and Stim1, as well as SOCE in human primary CD4+ T cells triggered by either TCR stimulation or thapsigargin treatment. Furthermore, we demonstrated that RO2959 completely inhibited cytokine production as well as T cell proliferation mediated by TCR stimulation or MLR (Mixed Lymphocyte Reaction). Lastly, we showed by gene expression array analysis that RO2959 potently blocked TCR triggered gene expression and T cell functional pathways similar to CsA and FK506. Thus, both from a functional and transcriptional level, our data provide evidence that RO2959 is a novel and selective CRAC inhibitor that potently inhibits human T cell functions.
Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions.
Specimen part, Treatment, Subject
View Samples