Tissues are often made up of multiple cell-types. Blood, for example, contains many different cell-types, each with its own functional attributes and molecular signature. In humans, because of its accessibility and immune functionality, blood cells have been used as a source for RNA-based biomarkers for many diseases. Yet, the proportions of any given cell-type in the blood can vary markedly, even between normal individuals. This results in a significant loss of sensitivity in gene expression studies of blood cells and great difficulty in identifying the cellular source of any perturbations. Ideally, one would like to perform differential expression analysis between patient groups for each of the cell-types within a tissue but this is impractical and prohibitively expensive.
Cell type-specific gene expression differences in complex tissues.
Specimen part
View SamplesFull title: Expression data from whole blood gene expression analysis of stable and acute rejection pediatric kidney transplant patients
Cell type-specific gene expression differences in complex tissues.
No sample metadata fields
View SamplesRPS19 mutations are the most common cause of the human disorder Diamond Blackfan Anemia. The R62W mutation was hypothesized to act in a dominant negative fashion and mice expressing RPS19R62W have many of the characteristics of Diamond Blackfan Anemia.
A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia.
Specimen part
View SamplesCalcium signaling is a central regulator of cardiomyocyte growth and function. Calmodulin is a critical mediator of calcium signals. Because the amount of calmodulin within cardiomyocytes is limiting, precise regulation of calmodulin expression may be an important for regulation of calcium signaling. In this study, we show for the first time that calmodulin levels are regulated post-transcriptionally in heart failure. The cardiomyocyte-restricted microRNA miR-1 inhibited translation of calmodulin-encoding mRNAs via highly conserved target sites within their 3-untranslated regions. In keeping with its effect on calmodulin expression, miR-1 downregulated calcium-calmodulin signaling through the calcineurin to NFAT. miR-1 also negatively regulated expression of Mef2a and Gata4, key transcription factors that mediate calcium-dependent changes in gene expression. Consistent with downregulation of these hypertrophy-associated genes, miR-1 attenuated cardiomyocyte hypertrophy in cultured neonatal rat cardiomyocytes and in the intact adult heart. Our data indicate that miR-1 regulates cardiomyocyte growth responses by negatively regulating the calcium-signaling components calmodulin, Mef2a, and Gata4.
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes.
Cell line, Treatment, Time
View SamplesThe embryo lethal adenosine methylase tDNA knockout line SALK_074069 was partially complemented with its cDNA driven by the embryo specific ABI3 promoter (A6 lines). The plants have reduced adenosine methylation and show pleiotropic phenotypes. Rosette leaves were harvested from 3 week old plants, both wild-type and mutant plants in triplicate and analysed using the Affymetrix ATH1 array.
Adenosine Methylation in Arabidopsis mRNA is Associated with the 3' End and Reduced Levels Cause Developmental Defects.
Age, Specimen part
View SamplesMethylation of mRNA at the N6 position of adenosin is known for a long time, but its function remains poorly understood. Here generated a null mutant in the catalytic subunit of the m6A mRNA methylosome, dIME4, in Drosophila to determine the impact of loss of m6A on gene expression using Illumina sequencing. Overall design: Since dIME4 is preferentially expressed in the nervous system and dIME4 null mutants are viable, we compared gene expression and alternative splicing in wild type (2 samples) and dIME4 mutants (3 samples) with genetic background matched w control females in neuron enriched head/thorax.
m<sup>6</sup>A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.
Specimen part, Cell line, Subject
View SamplesMethylation of mRNA at the N6 position of adenosin is known for a long time, but its function remains poorly understood. Here generated a null mutant in the catalytic subunit of the m6A mRNA methylosome, dIME4, in Drosophila to determine the impact of loss of m6A on gene expression using Illumina sequencing. Overall design: Since dIME4 is preferentially expressed in the nervous system and dIME4 null mutants are viable, we compared gene expression and alternative splicing in wild type (2 samples) and dIME4 mutants (3 samples) with genetic background matched w control females in neuron enriched head/thorax.
m<sup>6</sup>A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.
Specimen part, Cell line, Subject
View SamplesAim of this project was the evaluation of the effect of flushing (intraportal and intraoperative) hepatic allografts with tacrolimus before transplantation. Group A was administered tacrolimus, 20ng/ml in 1500ml albumin solution; and Group B was administered only albumin solution. Wedge biopsie of the allograft were harvested after 15 min flushing time and the gene expression profile were determined.
Effect of intraportal infusion of tacrolimus on ischaemic reperfusion injury in orthotopic liver transplantation: a randomized controlled trial.
Specimen part, Treatment
View SamplesMore than 200 direct CodY target genes in Staphylococcus aureus were identified by genome-wide analysis of in vitro DNA binding. This analysis, which was confirmed for some genes by DNase I footprinting assays, revealed that CodY is a direct regulator of numerous transcription units associated with amino acid biosynthesis, transport of macromolecules and virulence. The virulence genes regulated by CodY fell into three groups. One group was dependent on the Agr system for its expression; these genes were indirectly regulated by CodY through its repression of the agr locus. A second group was regulated directly by CodY. The third group, which includes genes for alpha-toxin and capsule synthesis, was regulated by CodY in two ways, i.e., by direct repression and by repression of the agr locus. Since S. aureus CodY was activated in vitro by the branched chain amino acids and GTP, CodY appears to link changes in intracellular metabolite pools with the induction of numerous adaptive responses, including virulence.
Direct targets of CodY in Staphylococcus aureus.
No sample metadata fields
View SamplesRRP1B is a breast cancer metastasis suppressor that interacts with various regulators of gene transcription
Metastasis-associated protein ribosomal RNA processing 1 homolog B (RRP1B) modulates metastasis through regulation of histone methylation.
Specimen part, Cell line
View Samples