Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)
Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.
Specimen part, Cell line, Subject
View SamplesRole of beta-arrestin2 in response to intermittent or continuous parathyroid hormone (PTH) treatment.
Beta-arrestin2 regulates parathyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts.
Sex, Age, Specimen part, Disease, Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome.
Sex
View SamplesThe second trimester fetal transcriptome can be assessed based on cell-free RNA found within the amniotic fluid supernatant. The objective of this study was to compare the suitability of two technologies for profiling the human fetal transcriptome: RNA-Seq and expression microarray. Comparisons were based on total numbers of gene detected, rank-order gene expression, and functional genomic analysis.
RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome.
Sex
View SamplesWe implemented an optimized processing, using alternative Chip Description Files (CDFs) and fRMA normalization, which improve the quality of downstream analysis.
Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples.
Specimen part
View SamplesThe objective of this study was to identify the tissue expression patterns and biological pathways enriched in term amniotic fluid cell-free fetal RNA by comparing functional genomic analyses of term and second-trimester amniotic fluid supernatants.
Global gene expression analysis of term amniotic fluid cell-free fetal RNA.
Sex
View SamplesThe objective of this study was to identify the tissue expression patterns and biological pathways enriched in term cord blood fetal RNA of obese women compared to lean
Assessing the fetal effects of maternal obesity via transcriptomic analysis of cord blood: a prospective case-control study.
Specimen part
View SamplesAmniotic fluid (AF) is a complex biological material that provides a unique window into the developing human. Residual AF supernatant contains cell-free fetal RNA. The objective of this study was to develop an understanding of the AF core transcriptome by identifying the transcripts ubiquitously present in the AF supernatant of euploid midtrimester fetuses.
The amniotic fluid transcriptome: a source of novel information about human fetal development.
Sex
View SamplesDuring pregnancy, cells from each fetus travel into the maternal circulation and organs, resulting in the development of microchimerism. Identification of the cell types in this microchimeric population would permit better understanding of possible mechanisms by which they affect maternal health. However, comprehensive analysis of fetal cells has been hampered by their rarity. In this study, we sought to overcome this obstacle by combining flow cytometry with multidimensional gene expression microarray analysis of fetal cells isolated from the murine maternal lung during late pregnancy. Fetal cells were collected from the lungs of pregnant female mice. cDNA was amplified and hybridized to gene expression microarrays. The resulting fetal cell core transcriptome was interrogated using multiple methods including Ingenuity Pathway Analysis, the BioGPS gene expression database, principal component analysis, the Eurexpress gene expression atlas and primary literature. Here we report that small numbers of fetal cells can be flow sorted from the maternal lung, facilitating discovery-driven gene expression analysis. We additionally show that gene expression data can provide functional information about the fetal cells. Our results suggest that fetal cells in the murine maternal lung are a mixed population, consisting of trophoblasts, mesenchymal stem cells and cells of the immune system. The detection of trophoblasts and immune cells in the maternal lung may facilitate future mechanistic studies related to the development of immune tolerance and pregnancy-related complications, such as preeclampsia. Furthermore, the presence and persistence of mesenchymal stem cells in maternal organs may have implications for long-term postpartum maternal health.
Comprehensive analysis of genes expressed by rare microchimeric fetal cells in the maternal mouse lung.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis.
Specimen part
View Samples