To understand the population genetics of structural variants (SVs), and their effects on phenotypes, we developed an approach to mapping SVs, particularly transpositions, segregating in a sequenced population, and which avoids calling SVs directly. The evidence for a potential SV at a locus is indicated by variation in the counts of short-reads that map anomalously to the locus. These SV traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between an SV trait at one locus and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3x) population sequence data from 488 recombinant inbred Arabidopsis genomes, we identified 6,502 segregating SVs. Remarkably, 25% of these were transpositions. Whilst many SVs cannot be delineated precisely, PCR validated 83% of 44 predicted transposition breakpoints. We show that specific SVs may be causative for quantitative trait loci for germination, fungal disease resistance and other phenotypes. Further we show that the phenotypic heritability attributable to sequence anomalies differs from, and in the case of time to germination and bolting, exceeds that due to standard genetic variation. Gene expression within SVs is also more likely to be silenced or dysregulated, as inferred from RNA-seq data collected from a subset of just over 200 of the MAGIC lines. This approach is generally applicable to large populations sequenced at low-coverage, and complements the prevalent strategy of SV discovery in fewer individuals sequenced at high coverage. Overall design: 209 samples consisting of different inbred lines from the Multiparent Advance Generation InterCross (MAGIC) population in the reference plant, Arabidopsis thaliana. For each sample, RNA was collected from the aerial shoot at the 4th true leaf stage, and Illumina mRNA-seq libraries were constructed (a single library was constructed with each line; that is, each MAGIC line is represented by one biological replicate). Using these libraries, which were non-stranded, paired-end 100 bp RNA-seq Illumina reads were generated for each sample, and used to quantify gene expresison in each MAGIC line. The resulting expression phenotypes are suitable for describing the impacts of genetic variation in the MAGIC line founders on the control of gene expression.
Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits.
Subject
View SamplesLung transplantation remains the only viable treatment option for the majority of patients with advanced lung diseases. However, 5-year post-transplant survival rates remain low primarily secondary to chronic rejection. Novel insights from global gene expression profiles may provide molecular phenotypes and therapeutic targets to improve outcomes after lung transplantation. We compared whole-genome transcriptional expression profiled using the Affymetrix Human Exon Array in peripheral blood mononuclear cells (PBMCs) in lung transplant patients and normal individuals. 364 dysregulated genes in Caucasian lung transplant patients relative to normal individuals. Enriched Gene Ontology biological processes and pathways included defense response, immune response and response to wounding. We then compared the expression profiles of potential regulating miRNAs which suggested that dysregulation of a number of lung transplant-associated genes (e.g., ATR, FUT8, LRRC8B, NFKBIA) may be attributed to the differential expression of their regulating miRNAs. This exploratory analysis of the relationship between these miRNAs and their gene targets in the context of lung transplantation warrants further investigation and may serve as novel therapeutic targets in lung transplant complications.
MicroRNAs Implicated in Dysregulation of Gene Expression Following Human Lung Transplantation.
Sex, Specimen part, Treatment, Race
View SamplesTranscriptome analysis of growth hormone dependant genes in glomerular podocytes
Growth hormone (GH)-dependent expression of a natural antisense transcript induces zinc finger E-box-binding homeobox 2 (ZEB2) in the glomerular podocyte: a novel action of gh with implications for the pathogenesis of diabetic nephropathy.
Specimen part, Treatment
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LL) and are often thought to represent a spectrum of a single disease. The malignant cells in T-ALL and T-LL are morphologically indistinguishable, and they share the expression of common cell surface antigens and cytogenetic characteristics. However, despite these similarities, differences in the predominant sites of disease in T-ALL and T-LL are observed. To determine if underlying biological distinctions may potentially contribute to some of these differences, we analyzed the global gene expression profiles of malignant T-cell precursors in ten T-ALL and nine T-LL using DNA arrays. Ten additional B-precursor ALL bone marrow samples, were used in a separate analysis.
Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No sample metadata fields
View SamplesMDA231, BT549, and SUM159PT basal-like breast cancer cell lines were transfected with non-targeting siRNA (siCONTROL), siRNA targeting DUSP4 (siDUSP4), or siCONTROL + 4 or 24 hr of 1uM selumetinib. Cells were harvested at 96 hr post-siRNA transfection. Data were Log2 RMA normalized.
Activation of MAPK pathways due to DUSP4 loss promotes cancer stem cell-like phenotypes in basal-like breast cancer.
Cell line, Compound
View SamplesCommitted preadipocyte fibroblasts were genetically labelled in transgenic mice by expressing GFP under the control of the locus for Zfp423, a gene controlling preadipocyte determination. These mice are herein referred to as Zfp423-GFP mice. The overall goal was to identify genes differentially expressed between adipogenic GFP+ firboblasts and non-adipogenic GFP- fibroblasts from either inguinal or epididymal fat stromal vascular cultures obtained from Zfp423-GFP mice.
Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.
No sample metadata fields
View Samples35 paired samples from initial diagnosis and first marrow relapse. Genes and pathways differentiating diagnosis and relapse were identified. Potential therapeutic targets were also identified.
Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies.
Specimen part, Disease
View SamplesThere is a distinct signature of differentially expressed probes from diagnosis to relapse
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies.
Specimen part, Disease
View Samples