We have analysed a family with an autosomal recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship.
Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy.
Sex, Specimen part
View SamplesWe have determined that sustained expression of EBF suppresses alternate lineage genes independently of Pax5.
Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5.
No sample metadata fields
View SamplesA catalytic role has been proposed in neoplastic angiogenesis and cancer progression for bone marrow-derived endothelial progenitor cells (EPCs). However, in preclinical and clinical studies the quantitative role of marrow-derived EPCs in cancer vascularization was found to be extremely variable. Adipose tissue represents an attractive source of autologous adult stem cells due to its abundance and surgical accessibility. CD34+cells from Lipotransfer aspirates (LAs) of patients undergoing breast reconstruction after breast cancer surgery were compared with CD34+ cells from Leucapheresis of normal subjects.
The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Evaluation and validation of a robust single cell RNA-amplification protocol through transcriptional profiling of enriched lung cancer initiating cells.
Specimen part, Disease, Cell line
View SamplesAccurate profiling of RNA expression of single cells is a valuable approach for broadening our understanding of cancer biology and mechanisms of dissemination, but requires the development of reliable methods for their molecular characterization. Here we evaluate a single cell methodology which generates microgram amounts of cDNA suitable for next generation sequencing (RNA-Seq), high throughput RT-qPCR and Affymetrix array analysis. The approach was tested by comparing expression profiles of amplified single MCF7 and MCF10A cells to profiles generated from unamplified RNA. The expression profiles were compared by Affymetrix-U133 arrays, RNA-Seq and high-density qPCR. There were strong cross-platform correlations of >80% and concordance between single cell and unamplified material of >70%. We exemplify the approach through analysis of rare sorted cancer initiating cells (CICs) derived from a NSCLC patient-derived xenograft. Populations of 10 cells from total tumour and two distinct subsets of CIC, putatively involved in primary tumor maintenance or metastasis formation were FACS sorted then directly amplified. CIC expression profiles strongly correlated with published stem-cell and epithelial-mesenchymal transition (EMT) signatures. Our results confirm the utility of the amplification system and our methodology to detect and distinguish RNA profiles in rare cell populations that inform on EMT and stem-cell characteristics. This GEO dataset comprises the Affymetrix U-133 Plus 2.0 data for MCF7 and MCF10A cDNA amplified from 1ng RNA and single cell samples.
Evaluation and validation of a robust single cell RNA-amplification protocol through transcriptional profiling of enriched lung cancer initiating cells.
Disease, Cell line
View SamplesTo investigate the genes differentially expressed upon plating on top of matrixes with different stiffness, we compared the expression profiles of MDA-MB-231 breast cancer cells plated on a stiff substrate (plastic) with the same cells plated on a soft substrate (hydrogels 0.7 kPa).
Mechanical cues control mutant p53 stability through a mevalonate-RhoA axis.
Cell line
View SamplesMucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here, we show via transcriptomic analysis that human MAIT cells are remarkably oligoclonal in both blood and liver, display high inter-individual homology, and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Overall design: Study of CDR3 regions of TCRalpha and beta sequences
Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.
No sample metadata fields
View SamplesThe role of post-transcriptional gene regulation in human brain development and cognitive diseases remains mostly uncharacterized. ELAV-like RNA binding proteins are a family of proteins that regulate several aspects of neuronal function including neuronal excitability and synaptic transmission. Here, we identify the downstream transcriptional networks of ELAVL2, an RNA-binding protein with unknown function in the brain. We knockdown expression of ELAVL2 in human neurons and conduct RNA-sequencing, identifying networks of differentially expressed and alternatively spliced genes with altered ELAVL2. These networks contain autism-relevant genes as well as previously identified targets of other RNA binding proteins implicated in autism spectrum disorders such as RBFOX1 and FMRP. ELAVL2-regulated coexpression networks are also enriched for synaptic genes as well as genes with human-specific patterns of gene expression in the frontal pole. Together, these data suggest that ELAVL2 regulation of transcript expression is critical for neuronal functions at risk in autism spectrum disorders and such mechanisms of post-transcriptional gene regulation may have contributed to human brain evolution. Overall design: We carried out RNA-sequencing (RNA-seq) of human neural progenitors cells. For the RNA-seq, 5 indipendent replicates were used for the neural progenitor cells. Primary human neural progenitor cultures were derived from mid-gestation fetal brain. Cells were transduced with a lentivirus containing a specific shRNA to ELAVL2 or a control shRNA. Cells were differentiated into neurons for 4 weeks and then harvested.
ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism.
No sample metadata fields
View SamplesBitter taste receptors (T2Rs) are typical G-protein coupled receptors expressed in various tissue where they are involved in the regulation of physiological processes, thus suggesting a wider function in sensing microenvironment. We analyzed their expression and role in acute myeloid leukemia (AML). AML cells express functional T2Rs and their stimulation with the agonist, denatonium benzoate, substantially modified the AML cell transcriptomic profile and functions. GEP analysis identified relevant cellular processes affected by denatonium treatment in AML, including cell cycle, survival, migration and metabolism. More precisely, T2R activation reduced proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation; impaired AML cell motility and migratory capacity; inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation.
Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Learning from nature: pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis.
Specimen part, Disease, Disease stage
View Samples