A key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.
Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.
Specimen part, Subject
View SamplesTo assess how the TOX3 nuclear protein can modulate gene expression in luminal epithelial cells, MCF7 cells were transfected with a TOX3 expression vector or vector control. In both instances, GFP was coexpressed, allowing isolation of transfected cells by flow cytometry before transcriptome analysis. Experiments were carried out under estrogen depleted conditions, and cells isolated 48 hours after transfection.
TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer.
Cell line
View SamplesComparison of transcriptional and translational regulation upon hepatocytic diffentiation by Total RNA and polysome bound RNA profiling.
Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells.
Sex, Age, Specimen part, Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View SamplesThe biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. We identified 2,209 genes that were differentially expressed in distant metastases relative to matched lung tumors. Mining of publicly available data bases revealed this expression signature in a subset of NSCLC patients who had a poorer prognosis than those without the signature.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View SamplesWe have used microarray technology to identify the transcriptional targets of Rho subfamily GTPases. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of biological functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are up-regulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc, and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells
Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases.
No sample metadata fields
View SamplesTargets of Retinoic Acid (RA) and 3,4-didehydroretinoic acid (ddRA) were identified in primary human epidermal keratinocytes grown in the presence of atRA or ddRA for 4 and 24 hours.
The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.
Treatment
View SamplesComparison of Total RNA and Polysome-bound RNA populations in deltaTOR containing cells and control cells upon hepatocyitc differentiation.
Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth.
Specimen part, Cell line
View SamplesSmall RNA libraries from total RNA isolated from adult ovaries Overall design: Small RNA libraries were derived from Ovaries of the Founder strain and their offspring and their reciprocal offspring. RNA from 5 individual ovaries was pooled .
piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.
No sample metadata fields
View SamplesUpon immunization with a T cell dependent antigen naive follicular B cells (Fo) are activated and a germinal center reaction is induced. Within the next 2 weeks large germinal centers develop where the process of affinity maturation takes place. To analyze the gene expression profile of resting and activated B cells, follicular B cells (Fo), B cells from early (GC1) and late germinal centers (GC2) were isolated and their gene expression profile compared.
In silico subtraction approach reveals a close lineage relationship between follicular dendritic cells and BP3(hi) stromal cells isolated from SCID mice.
Sex, Specimen part
View Samples