This SuperSeries is composed of the SubSeries listed below.
A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.
Specimen part, Cell line, Treatment
View SamplesThe deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces ER stress response as major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.
Specimen part
View SamplesThe deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.
Specimen part, Cell line, Treatment
View SamplesThe deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells.
Specimen part, Cell line, Treatment
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice.
Disease
View SamplesTranscriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Effects of sleep and wake on oligodendrocytes and their precursors.
Specimen part
View SamplesNeural crest cells migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system.
Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesTreatment of leukemia cells with 1,25-dihydroxyvitamin D3 may overcome their differentiation block and lead to the transition from myeloblasts to monocytes. To identify microRNA-mRNA networks relevant for myeloid differentiation, we profiled the expression of mRNAs and microRNAs associated to the low- and high-density ribosomal fractions in leukemic cells and in their differentiated monocytic counterpart. Intersection between mRNAs shifted across the fractions after treatment with putative target genes of modulated microRNAs showed a series of molecular networks relevant for the monocyte cell fate determination
Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition.
Specimen part, Treatment
View SamplesThe p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase (ERK) signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 (mTORC1) pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in non-tumoral brain (NB) and grade I-IV gliomas. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBMs demonstrating the lowest RSK3 protein levels. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (RSK1hi) that excluded long-survivor cases expressed higher levels of RSK1. No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in glioblastomas (GBM) were associated with worse survival. RSK1hi and, to a lesser extent, RSK2hi GBMs, showed higher levels of phosphorylated RSK, which indicates RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated-natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long-survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker LAPTM5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration, suggests RSK1 as a potential progression marker and therapeutic target for gliomas.
Aberrant expression of RSK1 characterizes high-grade gliomas with immune infiltration.
Specimen part
View Samples