The in vitro effect of infection with different strains of Toxoplasma gondii was tested 24 hours after infection of Human Foreskin Fibroblasts (HFF)
Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differential induction of TLR3-dependent innate immune signaling by closely related parasite species.
Specimen part, Cell line
View SamplesThe closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II () interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (/) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits TLR3-dependent type I interferon responses when targeted to the host endo-lysosomal system. Although live Toxoplasma fail to induce type I interferon, heat-killed parasites do trigger this response, albeit much weaker than Neospora, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that related parasite species interact with this pathway in distinct ways.
Differential induction of TLR3-dependent innate immune signaling by closely related parasite species.
Specimen part, Cell line
View SamplesThe closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II () interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (/) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits TLR3-dependent type I interferon responses when targeted to the host endo-lysosomal system. Although live Toxoplasma fail to induce type I interferon, heat-killed parasites do trigger this response, albeit much weaker than Neospora, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that related parasite species interact with this pathway in distinct ways.
Differential induction of TLR3-dependent innate immune signaling by closely related parasite species.
Specimen part
View SamplesThe goal of this study is to simultaneously examine host and parasite gene expression programs in skin lesions of human patients infected with the intracellular parasite Leishmania. We conducted high-resolution sequencing of the transcriptomes from early and late stage cutaneous leishmaniasis biopsies using an RNA-seq approach. An array of computational tools was applied to map reads to the Leishmania and human genomes and reconstruct full-length transcripts. mRNA abundance was determined for Leishmania and human genes, helping to explain tuning of the immune response to parasite transcriptomic profiles present in the lesion microenvironment. This data provided a deeper look at the transcriptomic profile of the host response in conjunction with a novel look at the parasite transcriptome in human cutaneous lesions. These data also offer the first glimpse of Leishmania gene expression profiles specific to the cutaneous manifestation of disease in human patients. This metatranscriptomic study provides a solid framework for future functional, genomic, and clinical studies of leishmaniasis as well as intracellular pathogenesis in general.
Meta-transcriptome Profiling of the Human-Leishmania braziliensis Cutaneous Lesion.
No sample metadata fields
View SamplesHypercapnia, the elevation of CO2 in blood and tissues, commonly occurs in severe acute and chronic respiratory diseases, and is associated with increased risk of mortality. Recent studies have shown that hypercapnia adversely affects innate immunity, host defense, lung edema clearance, and cell proliferation. Airway epithelial dysfunction is a feature of advanced lung disease, but the effect of hypercapnia on airway epithelium is unknown. Thus, in the current study we examined the effect of normoxic hypercapnia (20% CO2 for 24 h) vs normocapnia (5% CO2), on global gene expression in differentiated normal human airway epithelial cells. Gene expression was assessed on Affymetrix microarrays, and subjected to gene ontology analysis for biological process and cluster-network representation. We found that hypercapnia downregulated the expression of 183 genes and upregulated 126. Among these, major gene clusters linked to immune responses and nucleosome assembly were largely downregulated, while lipid metabolism genes were largely upregulated. The overwhelming majority of these genes were not previously known to be regulated by CO2. These changes in gene expression indicate the potential for hypercapnia to impact bronchial epithelial cell function in ways that may contribute to poor clinical outcomes in patients with severe acute or advanced chronic lung diseases.
Hypercapnia Alters Expression of Immune Response, Nucleosome Assembly and Lipid Metabolism Genes in Differentiated Human Bronchial Epithelial Cells.
Specimen part
View SamplesThe p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity. While p53 and the p73 isoform p73gamma have basic CTDs and form weak sequence-specific protein-DNA complexes, the major p73 isoforms alpha, beta and delta have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein-DNA complex stability, intranuclear mobility, promoter occupancy in vivo, transgene activation and induction of cell cycle arrest or apoptosis. A basic CTD in p53 and p73gamma therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. In contrast, most p73 isoforms exhibit constitutive DNA binding activity consistent with a predominant role in developmental control.
C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity.
No sample metadata fields
View Samplessh RNA of p73 in Fibroblasts compared to non-silencing control
p73 poses a barrier to malignant transformation by limiting anchorage-independent growth.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.
Cell line
View SamplesShort interfering RNAs (siRNA) are widely used as tool for gene inactivation in basic research and therapeutic applications. One of the major shortcomings of siRNA experiments are sequence-specific Off-target effects. Such effects are largely unpredictable because siRNAs can affect partially complementary sequences and function like microRNAs (miRNAs), which inhibit gene expression on mRNA stability or translational levels.
siPools: highly complex but accurately defined siRNA pools eliminate off-target effects.
Cell line
View Samples