This SuperSeries is composed of the SubSeries listed below.
A cross-platform genome-wide comparison of the relationship of promoter DNA methylation to gene expression.
Specimen part, Subject
View SamplesTranscriptional profiling of IAS subjects
A cross-platform genome-wide comparison of the relationship of promoter DNA methylation to gene expression.
Specimen part, Subject
View SamplesComparison of mRNA expression from FACS isolated Gli1 expressing stromal cells from mice given SAG21k versus vehicle
Control of inflammation by stromal Hedgehog pathway activation restrains colitis.
Sex, Specimen part, Treatment
View SamplesComparative analysis of mRNA from colons of mice that were given colitis though use of 5% dextran sulfate in the drinking water (Days 0-5)
Control of inflammation by stromal Hedgehog pathway activation restrains colitis.
Sex, Specimen part, Treatment
View SamplesParkinson disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (SNCA) and other proteins in aggregates termed “Lewy Bodies” within neurons. PD has both genetic and environmental risk factors, and while processes leading to aberrant protein aggregation are unknown, past work points to abnormal levels of SNCA and other proteins. Although several genome-wide studies have been performed for PD, these have focused on DNA sequence variants by genome-wide association studies (GWAS) and on RNA levels (microarray transcriptomics), while genome-wide proteomics analysis has been lacking. After appropriate filters, proteomics identified 3,558 unique proteins and 283 of these (7.9%) were significantly different between PD and controls (q-value<0.05). RNA-sequencing identified 17,580 protein-coding genes and 1,095 of these (6.2%) were significantly different (FDR p-value<0.05), but only 166 of the FDR significant protein-coding genes (0.94%) were present among the 3,558 proteins characterized. Of these 166, eight genes (4.8%) were significant in both studies, with the same direction of effect. Functional enrichment analysis of the proteomics results strongly supports mitochondrial-related pathways, while comparable analysis of the RNA-sequencing results implicates protein folding pathways and metallothioneins. Ten of the implicated genes or proteins co-localized to GWAS loci. Evidence implicating SNCA was stronger in proteomics than in RNA-sequencing analyses. Notably, differentially expressed protein-coding genes were more likely to not be characterized in the proteomics analysis, which lessens the ability to compare across platforms. Combining multiple genome-wide platforms offers novel insights into the pathological processes responsible for this disease by identifying pathways implicated across methodologies. Overall design: The study consists of mRNA-Seq (29 PD, 44 neurologically normal controls) and three-stage Mass Spectrometry Tandem Mass Tag Proteomics (12 PD, 12 neurologically normal controls) performed in post-mortem BA9 brain tissue. The proteomics samples are a subset of the RNA-Seq samples.
Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease.
No sample metadata fields
View SamplesThis dataset contains microarray data from normal controls (aged 20-99 yrs) and Alzheimer's disease cases, from 4 brain regions: hippocampus, entorhinal cortex, superior frontal cortex, post-central gyrus. Changes in expression of synaptic and immune related genes were analyzed, investigating age-related changes and AD-related changes, and region-specific patterns of change.
Gene expression changes in the course of normal brain aging are sexually dimorphic.
Sex, Subject
View SamplesThis dataset of cognitively normal controls is a subset of the GSE48350 dataset, which additionally contains microarray data from AD brains.
Gene expression changes in the course of normal brain aging are sexually dimorphic.
Sex, Subject
View SamplesThis experiment was designed to study oncogene-induced senescence (OIS). To this end we generated a series of cell lines derived from normal human diploid fibroblasts IMR90 forced to express the catalytic subunit of telomerase (hTERT). This cells were then subjected to further manipulation by orderly introducing defined genetic elements by retroviral transduction. The first cell line generated was ITV, which was obtained from the original cell line (IMR90 with hTERT) after introducing an empty vector. Subsequently, we introduced Mek:ER, which is a switchable version of the Mek kinase, a relevant downstream effector of Ras signaling during Ras-induced senescence, to generate ITM cells. We further modified this cell line by introducing SV40 small-t antigen (ST), papillomavirus oncoproteins E6 and E7 (E6/E7) or the combination of both (E6/E7 and ST). In this manner, we obtained ITMST, ITME6E7 and ITME6E7ST respectively.
Tumour biology: senescence in premalignant tumours.
No sample metadata fields
View SamplesWe report a transcriptional response in human OECs that encompasses multiple innate immune networks not previously associated with these cells. Major pathways included immune cell trafficking, and differential cytokine production Overall design: We used RNA-based sequencing technology for high-throughput profiling of innate immune responses in human OECs and the role of Burkholderia in triggering these responses
Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells.
No sample metadata fields
View SamplesThis study focused on transcription in the medial PFC (mPFC) as a function of age and cognition. Young and aged F344 rats were characterized on tasks, attentional set shift and spatial memory, which depend on the mPFC and hippocampus, respectively. Differences in transcription associated with age and cognitive function were examined using RNA sequencing to construct transcriptomic profiles for the mPFC, white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging associated with increased expression of immune and defense response genes and a decline in synaptic and neural activity genes. Importantly, we provide evidence for region specific transcription related to behavior. In particular, expression of transcriptional regulators and neural activity-related immediate-early genes (IEGs) are increased in the mPFC of aged animals that exhibit delayed set shift behavior; relative to age-matched animals that exhibit set shift behavior similar to younger animals. Overall design: The study contains 11 young and 20 aged rats for the mPFC and CA1 samples, which were used to investigate expression patterns associated with aging and behavior. White matter samples were used to investigate an age-related effect with 8 young and 9 aged rats.
Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex.
No sample metadata fields
View Samples