This SuperSeries is composed of the SubSeries listed below.
Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability.
Sex, Age, Specimen part, Disease stage
View SamplesComparison of DNA methylome, mRNA transcriptome, and copy number variation in tumors with global loss of DNA methylation to tumors with normal global methylation.
Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability.
Sex, Age, Specimen part, Disease stage
View SamplesThe epicardium, an epithelium covering the heart, is essential for cardiac development. During embryogenesis, the epicardium provides instructive signals for the growth and maturation of cardiomyocytes and for coronary angiogenesis. We generated an in vitro model of human embryonic epicardium derived from human pluripotent stem cells (hPSC-epi). These cells were able to differentiate into cardiac fibroblasts (cf) and smooth muscle cells (smc) in vitro (hPSC-epi-cf and hPSC-epi-smc respectively). Furthermore, we showed that they improved maturation of hPSC-derived cardiomyocytes (hPSC-cardio) in vitro while neural crest cells derived from hPSC (hPSC-NC) could not. Furthermore, they improved survival of hPSC-cardio and stimulated angiogenesis when injected in a rat model of myocardium infarction. We performed mRNA sequencing of the hPSC-epi, hPSC-epi-cf, hPSC-smc and hPSC-NC in order to identify the secreted molecules specifically produced by the hPSC-epi and/or its derivatives in comparison with the hPSC-NC. Vascular smooth muscle cells have different embryonic origins and different properties depending on their location in the body. The coronary smooth muscle cells come from the epicardium while the aortic ones come from the mesoderm or the neural crest. We performed mRNA sequencing of human coronary artery smc and human aortic smc to identify a specific signature of the coronary smc. We also compared the genes expressed in the hPSC-epi-smc and the smc derived from hPSC-derived lateral plate mesoderm. Overall design: For hPSC-derived samples the three replicates are coming from three different in vitro differentiations from H9. For the human primary cells, the triplicates are technical replicates (three different wells from the same culture at the same passage)
Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics.
Sex, Specimen part
View SamplesThe effect of a short-term calorie restricted diet was evaluated in heart in seven strains of mice
Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics.
Sex, Specimen part
View SamplesThe effect of a short-term calorie restricted diet was evaluated in gastrocnemius muscle (GASTROC) in seven strains of mice
Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics.
Sex, Specimen part
View SamplesThe effect of a short-term calorie restricted diet was evaluated in epididymal white adipose tissue (WAT) in seven strains of mice
Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics.
Sex, Specimen part
View SamplesThe effect of a short-term calorie restricted diet was evaluated in cerebral cortex in seven strains of mice
Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics.
Sex, Specimen part
View Samplessorafenib is the treatment of reference for hepatocellular carcinoma (HCC). We applied sorafenib on the human HCC cell line Huh7 and the subclone shRb, carrying a stable knock-down of the expression of the RB1 gene, a key regulator of liver carcinogenesis. Our aim was to better understand the physiologic and metabolic consequences of the exposure of HCC cells to sorafenib.
Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib.
Specimen part, Cell line, Treatment
View SamplesTransient genetic modification of plant protoplasts is a straightforward and rapid technique for the analysis of numerous aspects of plant biology. One drawback in the analysis of transformed protoplast suspensions is that they are a heterogeneous mix of cells that have and have not been successfully transfected. To overcome this problem, we have developed a system that employs a fluorescent positive selection marker in combination with flow cytometric analysis as well as fluorescence activated cell sorting (FACS) to isolate responses in the transfected protoplasts exclusively. This recombinase-compatible system enables high-throughput screening of genetic circuitry. Moreover, the use of FACS allows in depth downstream analysis. Lastly, over-expression is an effective means to dissect regulatory networks, especially where redundancy exists. Here, this system has been applied to the study of auxin signaling in order to investigate reporter gene activation and genome-wide transcriptional changes in response to manipulation of the auxin-response network. We have transiently over-expressed dominant negative mutant isoforms of Aux/IAA transcription factors (IAA7mII and IAA19mII; Tiwari et al., 2001) in Arabidopsis Pwer::GFP root protoplasts, making use of a RFP fluorescent positive selection marker and FACS to isolate the dually labeled (IAAnmII expressing and Pwer::GFP-positive) cells. We have compared the transcriptional differences between an empty vector control, IAA7mII and IAA19mII protoplasts that had either been treated with 5microM IAA or mock-treated for 3 hours.
Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts.
No sample metadata fields
View Samples