Response of pancreas cancer cells to treatment with recombinant MMP3
Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma.
Specimen part, Cell line, Treatment
View SamplesTissue-specific differentiation and inflammatory programmes are thought to independently contribute to disease. The orphan nuclear receptor NR5A2 is a key regulator of pancreas differentiation, and SNPs in and near the human gene are associated with risk of pancreatic cancer. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration, and cooperates with mutant Kras in tumor progression. Through transcriptomic analysis, we uncovered a basal pre-inflammatory state in the pancreas of heterozygous mice that is reminiscent of pancreatitis-induced inflammation and is conserved in histologically normal human pancreata with reduced Nr5a2 mRNA expression. In mice, Nr5a2 undergoes a dramatic transcriptional switch from tissue-specific to inflammatory loci, which promotes AP-1-dependent inflammatory gene transcription. Deletion of c-Jun in the pancreas of Nr5a2+/- mice rescues the pre-inflammatory phenotype and the defective regenerative response to damage. These findings provide compelling evidence that the same transcriptional networks supporting homeostasis in normal tissue can be subverted to foster inflammation upon genetic or environmental constraints. Overall design: A mild acute pancreatitis was induced by seven hourly injections of the CCK analog caerulein (Bachem) at 50 ug/kg. Briefly, animals were weighted before the beginning of the procedure and caerulein was administered i.p. Mice were sacrificed by cervical dislocation 8h, 24h,and 48h after the first injection. Three animals of each genotype and timepoint were analysed.
Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas.
Specimen part, Treatment, Subject
View SamplesShort sleep duration is associated with adverse metabolic, cardiovascular, and inflammatory effects. Co-twin study methodologies account for familial (e.g., genetics and shared environmental) confounding, allowing assessment of subtle environmental effects, such as the effect of short habitual sleep duration on gene expression. Therefore, we sought to investigate gene expression in monozygotic twins discordant for actigraphically phenotyped habitual sleep duration. Eleven healthy monozygotic twin pairs (82% female; mean age 42.7 years; SD=18.1), selected based on subjective sleep duration discordance, were objectively phenotyped for habitual sleep duration with two-weeks of wrist actigraphy. Peripheral blood leukocyte (PBL) RNA from fasting blood samples was obtained on the final day of actigraphic measurement and hybridized to Illumina humanHT-12 microarrays. Differential gene expression was determined between paired samples and mapped to functional categories using Gene Ontology. Next, a more comprehensive gene set enrichment analysis was performed based on the entire PBL transcriptome. The mean 24 hour sleep duration of the total sample was 439.2 minutes (SD=46.8 minutes; range 325.4 to 521.6 minutes). Mean within-pair sleep duration difference per 24 hours was 64.4 minutes (SD=21.2; range 45.9 to 114.6 minutes). The twin cohort displayed distinctive pathway enrichment based on sleep duration differences. Short sleep was associated with up-regulation of genes involved in transcription, ribosome, translation and oxidative phosphorylation. Unexpectedly, genes down-regulated in short sleep twins were highly enriched in immuno-inflammatory pathways such interleukin signaling and leukocyte activation, as well as developmental programs, coagulation cascade, and cell adhesion. Objectively assessed habitual sleep duration in monozygotic twin pairs appears to be associated with distinct patterns of differential gene expression and pathway enrichment. By accounting for familial confounding and measuring real life sleep duration, our study shows the transcriptomic effects of short sleep on dysregulated immune response and provides a potential link between sleep deprivation and adverse metabolic, cardiovascular and inflammatory outcomes.
Transcriptional Signatures of Sleep Duration Discordance in Monozygotic Twins.
Specimen part
View SamplesDifference in RNA content of different cell types introduces bias to gene expression deconvolution methods. If ERCC spike-ins are introduced into samples, predicted proportions of deconvolution methods can be corrected Overall design: Two cell types of distinctly different sizes and RNA per cell content: HEK cells and Jurkat cells were mixed in different proportions ensuring that each mixture contained total of one million cells. We sequenced RNA of the samples (including ERCC spike-in controls to 382 be able to control for the absolute RNA-concentration).
Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures.
Cell line, Subject
View SamplesAcetaminophen (APAP), a widely used analgesic and antipyretic that is considered to be relatively safe at recommended doses, is the leading cause of drug-induced liver failure in the United States. 3-Hydroxyacetanilide (AMAP), a regioisomer of acetaminophen is useful as a comparative tool for studying APAP-induced toxicity since it is non-toxic relative to APAP. TGF-alpha transgenic mouse hepatocytes were treated with both isomers to investigate mitogen-activated protein kinase cascades in order to differentiate their toxicological outcomes. Mitogen-activated protein kinase (MAPK) cascade expression and activation were measured using microarray and Bioplex technologies, respectively. APAP treatment led to c-Jun N-terminal kinase (JNK) activation, whereas AMAP treatment led to the activation of extracellular-signal-regulated protein kinase (ERK). The microarray data suggested APAP treatment may upregulate gene expression at multiple levels of the JNK cascade including a JNK-related scaffold protein. Expression data was related to phosphoprotein levels using the Bioplex system. APAP treatment led to a significant activation of JNK compared to its regioisomer. In contrast, microarray analysis of AMAP showed a slight upregulation of ERK gene activity. Furthermore, Bioplex data showed AMAP treatment led to significant ERK phosphorylation compared to APAP. Cell viability assays confirmed that APAP-induced activation of JNK was related to higher rates of cell death, whereas activation of ERK by AMAP may be cytoprotective.
Differential regulation of mitogen-activated protein kinase pathways by acetaminophen and its nonhepatotoxic regioisomer 3'-hydroxyacetanilide in TAMH cells.
Cell line
View SamplesCritically ill preterm infants experience multiple stressors while hospitalized. Morphine is commonly prescribed to ameliorate their pain and stress. We hypothesized that neonatal stress will have a dose-dependent effect on hippocampal gene expression, and these effects will be altered by morphine treatment. Male C57BL/6 mice were exposed to 5 treatment conditions between postnatal day 5 and 9: 1) Control, 2) mild stress + saline, 3) mild stress + morphine, 4) severe stress + saline and 5) severe stress + morphine. Hippocampal RNA was extracted and analyzed using Affymetrix Mouse Gene 1.0 ST Arrays. Single gene analysis and gene set analysis were used to compare groups with validation by qPCR. Stress resulted in enrichment of genes sets related to fear response, oxygen carrying capacity and NMDA receptor synthesis. Morphine downregulated gene sets related to immune function. Stress plus morphine resulted in enrichment of mitochondrial electron transport gene sets, and down-regulation of gene sets related to brain development and growth. We conclude that neonatal stress alone influences hippocampal gene expression, morphine alters a subset of stress-related changes in gene expression and influences other gene sets. Stress plus morphine show interaction effects not present with either stimulus alone. These changes may alter neurodevelopment.
Effects of neonatal stress and morphine on murine hippocampal gene expression.
Sex, Specimen part, Treatment
View SamplesPurpose: The goal of this study was to compare and contrast the next generation sequencing data to data obtained from a whole brain microarray study Overall design: Examination of the effects of Glyceollin alone, 17ß Estradiol alone or in combination on gene expression in the adult female mouse brain
Next generation sequencing analysis of soy glyceollins and 17-β estradiol: Effects on transcript abundance in the female mouse brain.
Sex, Cell line, Subject
View Sampleseffect of over-expression LIGHT on T cells for the liver gene expression
Lymphotoxin beta receptor-dependent control of lipid homeostasis.
No sample metadata fields
View SamplesCraniosynostosis is a disease defined by premature fusion of one or more cranial sutures. The mechanistic pathology of isolated single-suture craniosynostosis is complex and while a number of genetic biomarkers and environmental predispositions have been identified, in many cases the causes remain controversial and inconclusive at best. After controlling for variables contributing to potential bias, FGF7, SFRP4, and VCAM1 emerged as potential genetic biomarkers for single-suture craniosynostosis due to their significantly large changes in gene expression compared to the control population. Furthermore, pathway analysis implicated focal adhesion and extracellular matrix (ECM)-receptor interaction as differentially regulated gene networks when comparing all cases of single-suture synostosis and controls. Lastly, overall gene expression was found to be highly conserved between coronal and metopic cases, as evidenced by the fact that WNT2 and IGFBP2 were the only differentially regulated genes identified in a direct comparison. These results not only confirm the roles of previously reported craniosynostosis-related targets but also introduce novel genetic biomarkers and pathways that may play critical roles in its pathogenesis.
Differential expression of extracellular matrix-mediated pathways in single-suture craniosynostosis.
Sex, Specimen part
View SamplesChlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured biomarker inhibition and fetal-brain gene expression in wild-type (PON1+/+), PON1-knockout (PON1-/-), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75 or 0.85 mg/kg/d CPO from gestational days (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), RBC acylpeptide hydrolase (APH), plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1-/- and tgHuPON1Q192, but not PON1+/+ or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1-/- mice, but not in other genotypes.
Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues.
Specimen part
View Samples