RNA-seq count data at 3 timepoints was generated for Zika-exposed and Zika-naïve individuals in order to assess associated signatures Overall design: RNA-seq count data at 3 timepoints was generated for Zika-exposed and Zika-naïve individuals, extracted from PAXgene RNA blood solution with the PAXgene Blood RNA Kit using DNase digestion and an additional clean-up using RNEasy MinElute kit.
Comprehensive Immunoprofiling of Pediatric Zika Reveals Key Role for Monocytes in the Acute Phase and No Effect of Prior Dengue Virus Infection.
Sex, Age, Subject, Time
View SamplesHomeodomain interacting protein kinase 2 (Hipk2) has previously been implicated in control of several transcription factors involved in embryonic development, apoptosis, cell proliferation and tumour development13. Analysis of gene expression in tissues from genetically heterogeneous mouse or human populations can reveal motifs associated with the structural or functional components of the tissue, and may predict roles for genes of unknown function4,5. Here we have applied this network strategy to uncover a novel role for the Hipk2 gene in the transcriptional system controlling adipogenesis. Both in vitro and in vivo models were used to show that knockdown or loss of Hipk2 specifically inhibits white adipose cell differentiation and tissue development. In addition, loss of Hipk2 leads to induction of pockets of multilocular brown fat-like cells in remaining white adipose depots. These cells express markers of brown and beige fat such as uncoupling protein 1 (Ucp1) and transmembrane protein 26 (Tmem26), and thermogenic genes including PPAR- coactivator 1a (Ppargc1a), and cell death-inducing DFFA-like effector a (Cidea). These changes are accompanied by increased insulin sensitivity in Hipk2 knock-out mice and reduced high fat diet-induced weight gain, highlighting a potential role for this kinase in diseases such as diabetes and obesity. Our study underscores the versatility and power of a readily available tissue, such as skin, for network modelling of systemic transcriptional programs involved in multiple pathways, including lipid metabolism and adipogenesis.
Identification of Hipk2 as an essential regulator of white fat development.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesGene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.
Genetic architecture of mouse skin inflammation and tumour susceptibility.
No sample metadata fields
View SamplesGermline polymorphisms influence gene expression networks in normal mammalian tissues. Analysis of this genetic architecture can identify single genes and whole pathways that influence to complex traits including inflammation and cancer susceptibility. Changes in the genetic architecture during the development of benign and malignant tumours have not been investigated. Here, we document major changes in germline control of gene expression during skin tumour development as a consequence of cell selection, somatic genetic events, and changes in tumour microenvironment. Immune response genes such as Interleukin 18 and Granzyme E are under germline control in tumours but not in normal skin. Gene expression networks linked to tumour susceptibility and hair follicle stem cell markers in normal skin undergo significant reorganization during tumour progression. Our data highlight opposing roles of Interleukin-1 signaling networks in tumour susceptibility and tumour progression and have implications for the development of chemopreventive strategies to reduce cancer incidence.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesGermline polymorphisms influence gene expression networks in normal mammalian tissues. Analysis of this genetic architecture can identify single genes and whole pathways that influence to complex traits including inflammation and cancer susceptibility. Changes in the genetic architecture during the development of benign and malignant tumours have not been investigated. Here, we document major changes in germline control of gene expression during skin tumour development as a consequence of cell selection, somatic genetic events, and changes in tumour microenvironment. Immune response genes such as Interleukin 18 and Granzyme E are under germline control in tumours but not in normal skin. Gene expression networks linked to tumour susceptibility and hair follicle stem cell markers in normal skin undergo significant reorganization during tumour progression. Our data highlight opposing roles of Interleukin-1 signaling networks in tumour susceptibility and tumour progression and have implications for the development of chemopreventive strategies to reduce cancer incidence.
Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.
Sex
View SamplesWe developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in nave hosts.
Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes.
Specimen part
View SamplesHuman tumours show a high level of clonal heterogeneity that contributes to malignant progression and metastasis, but the processes that influence the timing of metastatic dissemination of subclones are unknown. Here, we have used whole exome sequencing of 98 matched benign, malignant, and metastatic skin tumours from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumour, but then evolve separately, acquiring an additional set of mutations during growth at distant sites. Shared mutations between primary carcinomas and their matched metastases have the distinct A>T signature of the initiating carcinogen Dimethylbanzanthracene (DMBA), but non-shared mutations are primarily G>T or C>T substitutions, associated with oxidative stress. We found recurrent point mutations in several hundred genes, including several in the Ras (Hras, Kras, and Pik3ca) pathway. We propose that carcinogen-driven mouse tumour models can aid our understanding of the forces that shape clonal and genetic evolution of human cancers.
Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers.
Sex
View SamplesGene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.
Sex, Age, Specimen part, Treatment
View SamplesGene expression levels in normal tissues can differ substantially between individuals, due to inherited polymorphisms acting in cis or trans. Analysis of this variation across a population of genetically distinct individuals allows us to visualize a network of co-expressed genes under normal homeostatic conditions, and the consequences of perturbation by tissue damage or disease development. Here, we explore gene expression networks in normal adult skin from 470 genetically unique mice, and demonstrate the dependence of the architecture of signaling pathways on skin tissue location (dorsal or tail skin) and perturbation by induction of inflammation or tumorigenesis. Gene networks related to specific cell types, as well as signaling pathways including Sonic Hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is extensively rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for eQTL network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules.
Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.
Sex, Specimen part
View Samples