This SuperSeries is composed of the SubSeries listed below.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying or not the FHB resistance QTL 2DL, after inoculation with water (H2O) or Fg; two inoculation methods were also compared, point and spray inoculation.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from near isogenic spring wheat lines carrying different combinaison of the FHB resistance QTLs 2DL, 3BS and 5A, after inoculation with water (H2O) or Fg; the point inoculation method was used.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with either water (H2O), a Fg strain (GZ3639) producing the mycotoxin deoxynivalenol (+DON), or a GZ3639-derived Fg strain which has been inactivated at the Tri5 locus (-DON).
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the very susceptible spring wheat cultivar Roblin inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar NuyBay inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant winter wheat cultivar Dream inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesFusarium head blight (FHB) is a major disease of cereal crops caused by the fungus Fusarium graminearum (Fg). FHB affects the flowering heads (or spikes). This study compare the gene expression profile in wheat spikelets from the resistant spring wheat cultivar Wuhan1 inoculated with water (H2O) or Fg.
Identification of biomarker genes for resistance to a pathogen by a novel method for meta-analysis of single-channel microarray datasets.
Specimen part
View SamplesThe adaptor protein Lnk is an important negative regulator of HSC homeostasis and self-renewal. This study aims to investigate the role of Lnk in HSC aging. Here we performed expression profiling of bone marrow CD150+CD48-LSK LT-HSCs from young and old WT and Lnk-/- mice. Results identify select Lnk-mediated pathways with potential involvement in HSC self-renewal and aging.
Lnk deficiency partially mitigates hematopoietic stem cell aging.
Specimen part
View SamplesMethyl-dependent regulation of transcription has expanded from a traditional focus on histones to encompass transcription factor modulation. While the Set7 lysine methyltransferase is associated with pro-inflammatory gene expression in vascular endothelial cells, genome-wide regulatory roles remain to be investigated. From initial characterization of Set7 as specific for methyl-lysine 4 of H3 histones (H3K4m1), biochemical activity toward non-histone substrates has revealed additional mechanisms of gene regulation. mRNA-Seq revealed transcriptional deregulation of over 8,000 genes in an endothelial model of Set7 knockdown. Gene ontology identified up-regulated pathways involved in developmental processes and extracellular matrix remodeling, whereas pathways regulating the inflammatory response as well as nitric oxide signaling were down-regulated. Chromatin maps derived from ChIP-Seq profiling of H3K4m1 identified several hundred loci with loss of H3K4m1 at gene regulatory elements associated with an unexpectedly subtle effect on gene expression. Transcription factor network analysis implicated six previously described Set7 substrates in mRNA-Seq changes, and we predict that Set7 post-translationally regulates other transcription factors associated with vascular endothelial gene expression through the presence of Set7 amino acid methylation motifs. We describe a role for Set7 in regulating developmental pathways and response to stimuli (inflammation/immune response) in human endothelial cells of vascular origin. Set7-dependent gene expression changes that occurred independent of H3K4m1 may involve transcription factor lysine methylation events. The method of mapping measured transcriptional changes to transcription factors to identify putative substrates with strong associations to functional changes is applicable to substrate prediction for other broad-substrate histone modifiers. Overall design: We used lentiviral delivered shRNA to knock down the expression of Set7 protein in HMEC-1 cells. As a control, we used a non-targeting shRNA. RNA-seq was performed in biological triplicate. Set7 knock down datasets are labeled “Set7KD” and non-targeting control datasets are labeled “NTC”
Deep sequencing reveals novel Set7 networks.
Cell line, Subject
View Samples