This study sought to evaluate the effects of dietary MeHg exposure on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction by relating controlled exposures with subsequent reproductive effects. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg. MeHg exposures at environmentally relevant levels were done in zebrafish for a full life cycle, mimicking a realistic exposure scenario, and in adult yellow perch for twenty weeks, capturing early seasonal ovarian development. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-seq and QPCR, but no significant phenotypic or physiological changes were observed with ovarian staging, fecundity, or embryo mortality. Yellow perch did not appear to be affected by MeHg, either at a molecular level, as assessed by QPCR of eight genes in the pituitary, liver, and ovary tissue, or a physiological level, as seen with ovarian somatic index, circulating estradiol, and ovarian staging. Lack of impact in yellow perch limits the usefulness of zebrafish as a model and suggests that the reproductive sensitivity to environmentally relevant levels of MeHg differs between yellow perch and zebrafish. Overall design: 12 samples of total RNA isolated from adult zebrafish ovaries were analyzed. Each exposure group (1, 3, and 10 ppm MeHg) had three replicates, as did the vehicle control. Each sample was comprised of pooled total RNA of up to 6 individual fish.
Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio).
No sample metadata fields
View SamplesThe present study reveals LMYC and MXD1 as novel regulators of a transcriptional program that is modulated during the maturation of Batf3-dependent dendritic cells (also known as type I classical dendritic cells or cDC1s).
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells.
Specimen part
View SamplesCiita has been suggested to control the expression of a number of genes based on ChIP-Seq or reporter anaysis but in vivo regulation beyong MHC class II has largely not been confirmed. We crossed Ciita knock out mice to Zbtb46 GFP knock-in knock out mice to identify classical dendritic cells in vivo in a Ciita deficient background.
Revisiting the specificity of the MHC class II transactivator CIITA in classical murine dendritic cells in vivo.
Specimen part
View Samples-chloroprene (2-chloro-1,3-butadiene), a monomer used in the production of neoprene elastomers, is of regulatory interest due to the production of multi-organ tumors in mouse and rat cancer bioassays. A significant increase in female mouse lung tumors was observed at the lowest exposure concentration of 12.8 ppm while a small, but not statistically significant, increase was observed in female rats only at the highest exposure concentration of 80 ppm. The metabolism of chloroprene results in the generation of reactive epoxides and the rate of overall chloroprene metabolism is highly species dependent. To identify potential key events in the mode-of-action of chloroprene lung tumorigenesis, dose response and time course gene expression microarray measurements were made in the lungs of female mice and female rats. The gene expression changes were analyzed using both a traditional analysis of variance approach followed by pathway enrichment analysis and a pathway-based benchmark dose (BMD) analysis approach. Pathways related to glutathione biosynthesis and metabolism were the primary pathways consistent with cross-species differences in tumor incidence and transcriptional BMD values for the pathway were more similar to differences in tumor response than were estimated target tissue dose surrogates based on the total amount of chloroprene metabolized per unit mass of lung tissue per day. The closer correspondence of the transcriptional changes with the tumor response are likely due to their reflection of the overall balance between metabolic activation and detoxication reactions whereas the current tissue dose surrogate reflects only oxidative metabolism.
Cross-species transcriptomic analysis of mouse and rat lung exposed to chloroprene.
Sex, Age, Specimen part, Subject
View SamplesFormaldehyde, an important industrial chemical, is used for multiple commercial purposes throughout the industrialized world. This simple, one carbon aldehyde is a natural metabolite formed in cells throughput the body. However, it is also a rodent nasal carcinogen, when inhaled by rats every day for two-years at irritant concentrations. High tumor incidences occur at concentration of 10 ppm and above; no tumors are observed at concentrations below 6.0 ppm. The US Environmental Protection Agency (US EPA) is now (2007) conducting a risk assessment to try to evaluate possible cancer risks for much lower levels of human exposure. Sensitive methods are needed to evaluate tissue responses below those concentrations that are clearly irritant or carcinogenic. This microarray study was undertaken to evaluate the mode of action for nasal responses to inhaled formaldehyde in Fisher 344 rats over a range of exposure concentrations. The range of concentrations used spanned those at which virtually no tissue responses were observed (0.7 ppm) to those that represent the highest concentration in the cancer studies (15 ppm) that produced nasal tumors in half the exposed group of rats. The study identified doses at which there were no statistically significant changes in gene expression; intermediate doses with changes in a small number of genes not easily grouped by function; and then concentrations where changes were consistent with irritation and cell stress responses.
A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure.
Sex, Subject
View SamplesFormaldehyde (FA), an endogenous cellular aldehyde, is a rat nasal carcinogen. In this study, concentration- and exposure-duration transitions in FA mode of action (MOA) were examined with pharmacokinetic (PK) modeling for tissue formaldehyde acetal (FAcetal) and glutathione (GSH) and with histopathology and gene expression studies for tissue responses in nasal epithelium from rats exposed to 0, 0.7, 2, 6, 10 or 15 ppm FA 6 hr/day for 1, 4 or 13 weeks. The study had two goals. The first goal was to develop a basic PK model to estimate various forms of tissue formaldehyde and tissue glutathione (GSH). The second goal was to compare histopathology and gene expression changes in nasal tissues caused by inhalation of FA with changes in tissue FAcetal and free GSH calculated from the PK model. Patterns of gene expression varied with concentration and with duration. At 0.7 and 2 ppm, sensitive response genes (SRGs) - associated with cellular stress, thiol transport/reduction, inflammation, and cell proliferation - were similarly upregulated at all exposure durations. At 6 ppm and greater, gene expression changes showed enrichment of pathways involved in cell cycle, DNA repair, and apoptosis processes. ERBB, EGFR, WNT, TGF-, Hedgehog, and Notch signaling were also enriched in differentially expressed genes. Benchmark doses (BMDs) for genes in significantly enriched pathways were lower at 13 weeks than at 1 or 4-week. The transcriptional and histological changes corresponded to PK model-predicted changes in free GSH at 0.7 and 2 ppm and in FAcetal at 6 ppm. DNA-replication stress, enhanced proliferation, metaplasia, and stem cell-niche activation appear to be associated with FA carcinogenesis at 6 ppm and above. Dose dependencies in MOA, the presence of high physiological FAcetal, and non-linear FAcetal/GSH tissue kinetics indicate that FA concentrations below 150 ppb (and probably any concentrations below irritant levels, i.e., ~ 1 ppm) would not increase cancer risks of inhaled FA in the nose or any other tissue. Closer examination of dose response relationships for endogenous compound toxicity could help guide biologically relevant approaches for chemical risk assessment.
Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound.
Sex, Age, Specimen part, Subject, Time
View SamplesTwo-year rodent bioassays play a central role in evaluating both the carcinogenic potential of a chemical and generating quantitative information on the dose-response behavior for chemical risk assessments. The bioassays involved are expensive and time-consuming, requiring nearly lifetime exposures (two years) in mice and rats and costing $2 to $4 million per chemical. Since there are approximately 80,000 chemicals registered for commercial use in the United States and 2,000 more are added each year, applying animal bioassays to all chemicals of concern is clearly impossible. To efficiently and economically identify carcinogens prior to widespread use and human exposure, alternatives to the two-year rodent bioassay must be developed. In this study, animals were exposed for 13 weeks to 10 chemicals that were positive for liver tumors in the two-year rodent bioassay, 14 chemicals that were negative for liver tumors, and two chemicals that produced an equivocal response. Matched vehicle control groups were run concurrently with each chemical treatment. Gene expression analysis was performed on the livers of the animals to assess the potential for identifying gene expression biomarkers and signaling pathways that can predict tumor formation in a two-year bioassay following a 13 week exposure.
Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment.
Sex, Age, Subject
View SamplesWe used microarrays to detail cDC gene expression program controlled by IRF4 and IRF8.
High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity.
Specimen part
View SamplesWe used microarrays to understand roles of BATF proteins in the regulation of cDC-specific gene expression.
High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity.
Specimen part
View SamplesWe have used an agnostic approach to identify drug combinations by using combination high throughput screening (cHTS) technology and make the surprising discovery that adenosine A2A and beta-2 adrenergic receptor agonists are highly synergistic, selective and novel agents that enhance glucocorticoid activity in B-cell malignancies.
Adenosine A2A and beta-2 adrenergic receptor agonists: novel selective and synergistic multiple myeloma targets discovered through systematic combination screening.
Specimen part, Cell line
View Samples