Immune checkpoint blockade is able to achieve durable responses in a subset of patients, however we lack a satisfying comprehension of the underlying mechanisms of anti-CTLA-4 and anti-PD-1 induced tumor rejection. To address these issues we utilized mass cytometry to comprehensively profile the effects of checkpoint blockade on tumor immune infiltrates in human melanoma and murine tumor models. These analyses reveal a spectrum of tumor infiltrating T cell populations that are highly similar between tumor models and indicate that checkpoint blockade targets only specific subsets of tumor infiltrating T cell populations. Anti-PD-1 predominantly induces the expansion of specific tumor infiltrating exhausted-like CD8 T cell subsets. In contrast, anti-CTLA-4 induces the expansion of an ICOS+ Th1-like CD4 effector population in addition to engaging specific subsets of exhausted-like CD8 T cells. Thus, our findings indicate that anti-CTLA-4 and anti-PD-1 checkpoint blockade induced immune responses are driven by distinct cellular mechanisms. Overall design: RNA profiles of a subset of tumor infiltrating T cell populations in anti-PD-1, anti-CTLA-r and control mice were generated by RNA sequencing, using Illumina HiSeq 4000. Mouse mutation background was assessed by whole exome sequencing data
Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
Specimen part, Cell line, Subject
View SamplesWe are submitting two small RNA libraries derived from ovarian tissue of mutant and heterozygous for the Kumo/Qin gene, required for the piRNA production in germline cells. In absence of Kumo/Qin, piRNA production is reduced and transposons are derepressed. Overall design: Analysis of piRNA production in Kumo/Qin mutants
The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila.
Specimen part, Cell line, Subject
View SamplesThe apolipoprotein A-I (apoA-I) mimetic peptide 4F displays prominent anti-inflammatory properties, including the ability to reduce vascular macrophage content. Macrophages are a heterogenous group of cells, represented by two principal phenotypes, the classically activated M1 macrophage and an alternatively activated M2 phenotype. We recently reported that 4F favors the differentiation of human monocytes to an anti-inflammatory phenotype similar to that displayed by M2 macrophages. In the current study, microarray analysis of gene expression in monocyte-derived macrophages (MDMs) was carried out to identify inflammatory pathways modulated by 4F treatment. ApoA-I treatment of MDMs served as a control. Transcriptional profiling revealed that 4F and apoA-I modulated expression of 113 and 135 genes that regulate inflammatory responses, respectively. Cluster heat maps revealed that 4F and apoA-I induced similar changes in expression for 69 common genes. Modulation of other gene products, including STAT1 and PPARG, were unique for 4F treatment. Besides modulating inflammatory responses, 4F was found to alter gene expression in cell-to-cell signaling, cell growth/proliferation, lipid metabolism and cardiovascular system development. These data suggest that the protective effects of 4F in a number of disease states may be due to underlying changes in monocyte/macrophage gene expression.
Regulation of pattern recognition receptors by the apolipoprotein A-I mimetic peptide 4F.
Specimen part, Treatment
View SamplesVery little is known about splicing and its regulation in germ cells, particularly during meiosis. This paper describes the role of a male germ cell-specific protein, Tudor containing protein 6 (TDRD6), in assembly of the spliceosome in spermatocytes. We show that in spermatocytes, TDRD6 interacts with the key protein methyl transferase of the splicing pathway PRMT5. PRMT5 methylates arginines in substrate proteins. In a methylation dependent manner, TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA, thus before an RNP-type spliceosome has been assembled. In Tdrd6-/- primary spermatocytes, PRMT5''s association with SmB and the arginine dimethylation of SmB are much reduced. Abrogation of arginine methylation impaired the assembly of spliceosomes and the presence of the spliceosomal RNA U5 is aberrantly increased. These deficiencies in spliceosome maturation correlated with decreased numbers of Cajal bodies and gems involved in later stages, i.e. nuclear snRNP maturation. To reveal functional consequences of these deficiencies, transcriptome analysis of primary spermatocytes showed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions upon TDRD6 loss. This study reveals a novel function of TDRD6 in spliceosome maturation and mRNA splicing in spermatocytes. Overall design: Examination of splicing defects in isolated diplotene cells of 20dpp Tdrd6-/- vs. Tdrd6+/- testes pooled from at least 4 mice by deep sequencing in duplicate using Illumina® HiSeq 2500.
TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes.
Specimen part, Subject
View SamplesHow cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of WNT signaling upon knock-down (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFa as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the membrane localization, and thus function, of TGFa. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFa exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFa ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFa and GLI1 that enhances metastases. We suggest that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities. Overall design: CC14 and CC36, two primary colon cancer cells, were treated with control or shTMED9 expressing lentivirus. In addition, CC14 cells were also treated with shTMED3 expressing lentivirus. All the experiments were run in triplicates totaling 15 Samples.
The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases.
Specimen part, Disease stage, Subject
View SamplesWe applied previously established in silico whole-embryo body (WB)-subtraction-based approach to identify “lens-enriched” genes. These new RNA-seq datasets on embryonic stages E10.5, E12.5, E14.5 and E16.5 confirmed high expression of established cataract-linked genes and identified several new potential regulators in the lens. Finally, we present lens stage-specific UCSC Genome Brower annotation-tracks; these are publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/) and enable a user-friendly visualization of lens gene expression/enrichment to help prioritize genes from high-throughput data from cataract cases. Overall design: RNA-sequencing datasets of microdissected embyonic eye lens samples from stages embryonic day E10.5, E12.5, E14.5 and E16.5 were generated. To estimate lens enriched genes we generated control “whole-embryo body (WB)” datasets. The lens enriched genes were used for enrichment level based clustering to identify gene clusters exhibiting distinct lens enrichment patterns across E10.5 to E16.5 developmental window. This new lens RNA-seq data and its accessibility through iSyTE 2.0 serves as a new integrative resource for prioritization of lens defects and/or cataract-linked candidate genes identified by other high-throughput analyses such as exome-seq and GWAS.
RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery.
Cell line, Subject
View SamplesOverview: We report here that gene expression in E13.5 wild type (WT) mouse lenses differs from the lenses of mice that conditionally lack the Prox1 transcription factor in the lens of their eyes (Prox1 cKO) as assayed by high throughput RNA sequencing (RNAseq). The methodology outlined herein is similar to a previous RNAseq experiment from our lab (Manthey et al., 2014a)(Geo ascension: GSE 49949), and the filtering and processing criteria for this experiment was published as well.(Manthey et al., 2014b). The mammalian lens is notable for its biased gene expression, where 90% of the observed protein is expressed by just 50 genes. RNAseq was employed to sequence past these highly expressed lens structural genes and report the relative abundance of both high and low expression genes. In this study we demonstrated that 642 genes were differentially expressed in the lenses of Prox1 cKOs as compared to WT lenses. These data were analyzed using the DAVID biostatical analysis package and we found that the expression of lens specific proteins, as well as cytoskeletal genes and genes that regulated the cytoskeleton were expressed at lower levels in Prox1 cKOs. This analysis showed that the expression of genes encoding extracellular matrix components and their regulators, as well as cell adhesion increased in Prox1 cKO lenses when compared to WTs. Description of Filtering Criteria: Our initial analysis identified 5,492 genes that were differentially expressed in Prox1 cKO lenses as compared to WTs as computed by Pair-wise qCML method exact tests with a Benjamini Hochberg false discovery rate correction greater than the threshold of P < 0.05. As we described previously, there is significant variation in gene expression between inbred C57Bl/6 <har> and mice with a mixed background below a threshold of 2.5 fold. For this reason we filtered out all genes whose differential expression was less than 2.5 fold. We also wanted to filter out genes that were expressed at such low levels that they were unlikely to impact cellular function. We restricted our list to those genes that were expressed at greater than 2 Reads per Kilobase per million reads (RPKM) in either WT or Prox1 cKO samples, a value which corresponds to approximately 1 mRNA molecule per cell. The application of these filtering criteria resulted in narrowing our list to 642 genes that were likely to impact the Prox1 cKO lens phenotype. Manthey, A. L., Lachke, S. A., FitzGerald, P. G., Mason, R. W., Scheiblin, D. A., McDonald, J. H. and Duncan, M. K. (2014a) ''Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development'', Mech Dev 131: 86-110. Manthey, A. L., Terrell, A. M., Lachke, S. A., Polson, S. W. and Duncan, M. K. (2014b) ''Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis'', Genom Data 2: 369-374. Overall design: RNA-Seq comparison of C57Bl/6 <har> wild type controls and Prox1 conditional knockout lenses at E13.5
Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression.
No sample metadata fields
View Samplesß1-integrin is the major ß-integrin subunit expressed in both lens epithelial and fiber cells. Our previous research indicated that ß1-integrin is essential for the maintenance of lens epithelial integrity and survival in late embryonic lens development (Simirskii et al, 2009). Lack of ß1-integrin in the lens will lead to severe micropthalmia and lack of lens in adult mice. In order to study the mechanisms involved, high throughput RNA sequencing (RNAseq) was performed to determine the genes that are differentially expressed between E15.5 wild type (WT) lenses and lenses that lack ß1-integrin expression due to the action of MLR10 CRE (ß1-cKO). The methodology used here is similar to the other RNAseq experiments that were previously performed in our lab (Manthey et al., 2014a and Audette et al, 2015) (Geo accession: GSE 49949 and GSE69940) . Meanwhile, the filtering criteria and processing procedures were also published (Manthey et al., 2014b). Compared to WT, 120 genes were found to be differentially expressed in ß1-cKO lenses. Moreover, bioinformatics tools (DAVID (the database for Annotation, Visulization and Integrated Discovery), and PANTHER (Protein Analysis through Evolutionary Relationship) classification system) as well as manual literature searching was applied for further data analysis. It showed that genes involved in EMT and stress-responses were differentially expressed in ß1-cKO compared to that of WT. Description of filtering criteria: To identify the differentially expressed genes, pair-wise qCML method exact tests with a Benjamini Hochberg false discovery rate correction greater than the threshold of P<0.05 was applied, which identified 5120 genes. As previously described (Manthey et al., 2014b), most of the genes differentially expressed between inbred C57Bl/6 <har> and mice with a mixed background were below a threshold of 2.5 fold change. Therefore, all differentially expressed genes with a less than 2.5 fold change were filtered out. Further, genes whose expression level were not high enough to be biologically significant were also filtered out, based on the RPMK (Reads per Kilobase per million reads) value. Any gene in the final list has RPKM greater that 2 in either WT or ß1-cKO samples, a value that corresponds to approximately 1 mRNA molecule per cell. By applying a combination of these filtering criteria, 120 differentially expressed genes were found, which could potentially elucidate the molecular connections between conditional deletion of ß1-intergrin from the lens and the observed phenotypic abnormalities. Manthey, A. L., Lachke, S. A., FitzGerald, P. G., Mason, R. W., Scheiblin, D. A., McDonald, J. H. and Duncan, M. K. (2014a) ''Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development'', Mech Dev 131: 86-110. Manthey, A. L., Terrell, A. M., Lachke, S. A., Polson, S. W. and Duncan, M. K. (2014b) ''Development of novel filtering criteria to analyze RNA-sequencing data obtained from the murine ocular lens during embryogenesis'', Genom Data 2: 369-374. Overall design: RNA-Seq comparison of C57Bl/6 <har> wild type controls and ß1-integrin conditional knockout lenses at E15.5, three biological replicates were used in each group
β1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis.
Specimen part, Subject
View SamplesBackground: The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT).
Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo.
Specimen part
View SamplesThe Arabidopsis cytochrome P450 KLUH (KLU)/CYP78A5 promotes organ growth in a non-cell autonomous manner. To identify genes regulated by KLU activity, homozygous klu-2 mutants carrying constructs for EtOH-inducible overexpression of wild-type KLU (35S::AlcR-AlcA::KLU) or of enzymatically inactive KLU protein (35S::AlcR-AlcA::KLUmut) were induced with EtOH and sampled at 90 min and 240 min after induction for gene expression changes.
Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling.
No sample metadata fields
View Samples