Interference with chemoresistance to enhance the efficacy of chemotherapeutics may be of great utility for cancer therapy. We have identified KINK-1 (Kinase Inhibitor of NF-kappaB-1), a highly selective small-molecule IKKkappa inhibitor, as a potent suppressor of both constitutive and induced NF-kappaB activity in melanoma cells. While KINK-1 profoundly diminished various NF-kappaB-dependent gene products regulating proliferation, cytokine production or anti-apoptotic responses, the compound by itself showed little antiproliferative or pro-apoptotic activity on the cellular level. However, its combination with some cytostatics markedly enhanced their antitumoral activities in vitro, and doxorubicin-induced NF-kappaB activation, a mechanism implicated in chemoresistance, was abrogated by KINK-1. In addition, when KINK-1 was combined with doxorubicin in an in vivo melanoma model, experimental metastasis was significantly diminished as compared to either treatment alone. Induction of chemoresistance by KINK-1 in vivo was not observed. Thus, KINK-1 or related substances might increase the susceptibility of tumors to chemotherapy.
KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment.
No sample metadata fields
View SamplesThe goal of this experiment was to compare the genes expressed in malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of homozygous mutation of the p53 gene or heterozygous mutation of several different ribosomal protein (rp) mutations. Since MPNSTs arise very rarely in wild type zebrafish, it seemed a possibility that p53 and rps may in fact be functioning in similar pathways. The tumors arising from the different mutations had been previously classified as similar by histology, thus the goal of the array experiments was to establish if any molecular signatures could be found that could delineate the p53 from the rp MPNSTs.
Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations.
No sample metadata fields
View Samplescdipt is an essential gene in the synthesis of phosphatidylinositol (PtdIns) in the zebrafish, Danio rerio. The zebrafish mutant cdipt^hi559Tg (ZL782) carries a retroviral insertion which inactivates cdipt. Homozygous mutants exhibit hepatocellular endoplasmic reticulum (ER) stress and non-alcoholic fatty liver disease (NAFLD) pathologies at 5 days post fertilization (dpf). This study reveals a novel link between PtdIns, ER stress, and steatosis.
Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish.
Age
View SamplesMyD88-independent signal transduction associated with Toll-like receptors (TLRs) 3 and TLR4 is mediated through the adapter protein TRIF (TIR-domain-containing adapter-inducing interferon-beta). It has been proposed that TLR signalling is important for the transcription of crucial inflammasome components like NLRP3, a process that has been termed "priming". In order to test whether TRIF signalling was required for the priming of inflammasome components, we performed a genome wide transcriptional analysis on wild-type and Trif-knockout bone marrow derived macrophages (BMMs) before and 1, 3 and 6 hours after phagocytosis of E. coli. These results indicated that TRIF was involved in the activation and not transcriptional priming of the NLRP3 inflammasome.
Detection of prokaryotic mRNA signifies microbial viability and promotes immunity.
Sex, Specimen part, Time
View SamplesPrimary murine osteoblasts were isolated form the calvariae of newborn mice. 10 days after the addition of ascorbic acid (50 g/ml) and -glycerophosphate (10 mM), cells were serum-starved over night and then incubated for 6 hours with condtioned medium of MDA-PCa2b cells or conditioned medium of PC-3 cells
Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.
Specimen part
View SamplesGenome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.
Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.
Sex, Age, Specimen part
View SamplesDLK1/FA-1 (delta-like 1/fetal antigen-1) is a transmembrane protein belonging to Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here, we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific-Dlk1 over-expressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). CT-scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue-level histomorphometric analysis demonstrated decreased bone formation rate and enhanced bone resorption in Col1-Dlk1 as compared to WT. At a cellular level, DLK1 markedly reduced the total number of bone marrow (BM)-derived CFU-F, as well as their osteogenic capacity. In a number of in vitro culture systems, DLK1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of pro-inflammatory bone resorbing cytokines (e.g, Il7, Tnfa and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of DLK1 in bone marrow by activated T-cells. However, Dlk1-/- mice were protected from ovx-induced bone loss. Thus, we identified DLK1 as a novel regulator of bone mass that function to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T-cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss.
DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice.
Specimen part
View SamplesSiponimod selectively enriched regulatory T and B lymphocytes in active secondary progressive multiple sclerosis patients: 20 SPMS baseline including 3 repeats, 19 treated with 5 placebo and 14 siponimod treated.
Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis.
Sex, Age, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of primary osteoporosis and advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Control cells were obtained from bone marrow of femoral heads of middle-aged, non-osteoporotic donors after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View Samples