The characteristics of immune cells infiltrating pediatric brain tumors is largely unexplored. A better understanding of these characteristics will provide a foundation for development of immunotherapy for pediatric brain tumors.
Characterization of distinct immunophenotypes across pediatric brain tumor types.
Specimen part, Disease, Disease stage
View SamplesWe compared molecular characteristics of primary and recurrent pediatric ependymoma to identify sub-group specific differences.
Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma.
Specimen part
View SamplesInflammatory response has been identified as a molecular signature of high-risk Group A ependymoma (EPN). To better understand the biology of this phenotype and aid therapeutic development, transcriptomic data from Group A and B EPN patient tumor samples, and additional malignant and normal brain data, were analyzed to identify the mechanism underlying EPN group A inflammation.
Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A Ependymoma.
Specimen part, Disease, Disease stage
View SamplesIntroduction: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95% at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in exceptionally poor quality of life for survivors. Identification of an effective pharmacological therapy would drastically decrease morbidity and improve long term outcomes for children with ACP.
Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.
Specimen part, Disease, Disease stage
View SamplesIMP3 (IGF2-mRNA binding protein 3) is a member of a family of IGF2-mRNA binding proteins that function in RNA stabilization, trafficking and localization. It exhibits the properties of an oncofetal protein and its expression correlates with the aggressive behavior of many tumors. In breast cancer, IMP3 is associated with the highly aggressive triple-negative subtype (TNBC) The challenge is to identify specific proteins and functions that are regulated by IMP3. As an approach to this problem, we compared the mRNA expression profile of SUM-1315 cells, a TNBC cell line, to the same cells that had been depleted of IMP3. Overall design: SUM-1315 breast cancer cells were were infected with lentivirus for control shRNA and two different IMP3 shRNAs and processed for RNA-sequencing
IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer.
Specimen part, Subject
View SamplesMouse Hammer toe (Hm) shows syndactyly. To reveal the molecular mechanisms of Hm phenotype, we performed microarray analysis to search differencially expressed genes in Hm limb.
Enhancer adoption caused by genomic insertion elicits interdigital <i>Shh</i> expression and syndactyly in mouse.
Specimen part
View SamplesAccording to the well-documented scenario with regard to the cytokinin-mediated phosphorelay signal transduction in Arabidopsis thaliana, certain members of the type-B ARR family are crucially implicated in the regulatory networks that are primarily propagated by the cytokinin-receptors (AHKs) in response to cytokinin. Nevertheless, clarification of the biological impact of these type-B ARR transcription factors is at a very early stage. Here we focused on a pair of highly homologous ARR10 and ARR12 genes by constructing an arr10 and arr12 double-null mutant. The mutant alleles used in this study were arr10-5 and arr12-1. arr10-5 is the SALK_098604 T-DNA insertion line, whose mutation was determined to be located in the fifth exon of the ARR10 coding sequence. arr12-1 is the SALK_054752 T-DNA insertion line, whose mutation was determined to be located in the third exon of the ARR12 coding sequence. The resulting mutant showed remarkable phenotypes with special reference to the cytokinin-action in roots (e.g., inhibition of root elongation, green callus formation from explants). Furthermore, we demonstrated that ARR10 and ARR12 are involved in the AHK-dependent signaling pathway that modulates the differentiation of root-vascular tissues (i.e., protoxylem-specification), suggesting that ARR10 and ARR12 are the prominent players that act redundantly in the AHK-dependent cytokinin signaling in roots. Keeping this in mind, we then collected the root-specific and combinatorial DNA microarray datasets with regard to the cytokinin-responsible genes by employing both the wild-type and arr10 arr12 double-mutant plants. In this study, wild-type and the arr10 arr12 mutant grown vertically on MS agar plates for 2 weeks were treated with 20 microM of the cytokinin trans-zeatin (TZ) or 0.02% DMSO (solvent for trans-zeatin solution) for 1h. These treated plant samples were divided into three portions, from which RNA samples were prepared separately from roots of seedlings with use of RNeasy Plant Mini Kit (Qiagen, Valencia, CA, U.S.A.). The quality of RNAs prepared was analyzed by Bioanalyzer 2100 (Agilent Technologies). These RNA samples were processed as recommended by the Affymetrix instruction (Affymetrix GeneChip Expression Analysis Technical Manual, Affymetrix). These datasets will provide us with bases for understanding the early response to cytokinin on roots of seedlings in Arabidopsis thaliana.
Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.
Specimen part, Treatment
View SamplesIn Arabidopsis thaliana, the immediate early response of plants to cytokinin is formulated as the multistep AHK-AHP-ARR phosphorelay signaling circuitry, which is initiated by the cytokinin-receptor histidine protein kinases. In the hope of finding components (or genes) that function downstream of the cytokinin-mediated His-Asp phosphorelay signaling circuitry, we carried out genome-wide microarray analyses. To this end, we focused on a pair of highly homologous ARR10 and ARR12 genes by constructing an arr10 arr12 double null mutant. The mutant alleles used in this study were arr10-5 and arr12-1. arr10-5 is the SALK_098604 T-DNA insertion line, whose mutation was determined to be located in the fifth exon of the ARR10 coding sequence. Arr12-1 is the SALK_054752 T-DNA insertion line, whose mutation was determined to be located in the third exon of the ARR12 coding sequence. The resulting mutant exhibits a characteristic phenotype with regard to the cytokinin-mediated His-Asp phosphorelay. Here we, therefore, compared response to cytokinin in wild type with that in arr10 arr12 double mutant. In this study, wild type and the arr10 arr12 double mutant grown vertically on MS agar plates for 2 weeks were treated with 20uM t-zeatin or 0.02% DMSO (solvent for t-zetion solution) for 1h. These treated plant samples were divided into three portions, from which RNA samples were prepared separately from aerial parts of seedlings with use of RNeasy Plant Mini Kit (Qiagen, Valencia, CA, U.S.A.). The Quality of RNAs prepared was analyzed by Bioanalyzer 2100 (Agilent Technologies). These RNA samples were processed as recommended by the Affymetrix instruction (Affymetrix GeneChip Expression Analysis Technical Manual, Affymetrix). These dataset will provide us with bases for understanding the early response to cytokinin on aerial parts of seedlings in Arabidopsis thaliana.
Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.
Specimen part
View SamplesUnlike other members of the MAPK family, ERK5 contains a large C-terminal domain with transcriptional activation capability in addition to an N-terminal canonical kinase domain. Genetic deletion of ERK5 is embryonic lethal and tissue-restricted deletions have profound effects on erythroid development, cardiac function and neurogenesis. In addition, depletion of ERK5 is anti-inflammatory and anti-tumorigenic. Small molecule inhibition of ERK5 has been shown to have promising activity in cell and animal models of inflammation and oncology. Here we report the synthesis and biological characterization of potent, selective ERK5 inhibitors. In contrast to both genetic depletion/deletion of ERK5 and inhibition with previously reported compounds, inhibition of the kinase with the most selective of the new inhibitors had no anti-inflammatory or anti-proliferative activity. The source of efficacy in previously reported ERK5 inhibitors is shown to be off-target activity on bromodomains (BRDs), conserved protein modules involved in recognition of acetyl-lysine residues during transcriptional processes. It is likely that phenotypes reported from genetic deletion or depletion of ERK5 arise from removal of a non-catalytic function of ERK5. The newly reported inhibitors should be useful in determining which of the many reported phenotypes are due to kinase activity, and delineate which can be pharmacologically targeted. Overall design: Two cellular models with reported ERK5-regulated signaling were used: Pam3CSK4-stimulated HUVECs as a model of inflammation, and EGF-stimulated HeLa cells as an established cell model of ERK5 regulation. Cells were pre-incubated with DMSO vehicle, AX15836 (ERK5 inhibitor), AX15839 (dual ERK5/BRD inhibitor), or I-BET762 (BRD inhibitor), then stimulated with agonist. Cellular responses were verified by immunoassays and western blots using replicate wells in the same experiment.
ERK5 kinase activity is dispensable for cellular immune response and proliferation.
Specimen part, Subject, Compound
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View Samples