Standardization of MSC manufacturing is urgently needed to facilitate comparison of clinical trial results. Here, we compare gene expression of MSC generated by the adaptation of a proprietary method for isolation and cultivation of a specific umbilical cord tissue-derived population of Mesenchymal Stromal Cells (MSCs)
Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.
No sample metadata fields
View SamplesMice that develop benign cartilage lesions due to overexpression of Gli2 in chondrocytes developed lesions similar to chondrosarcomas when also deficient in p53. Gli2 overexpression and p53 deficiency had opposing effects on chondrocyte differentiation, but had additive effects negatively regulating apoptosis. Regulation of Igfbp3 expression and IGF signaling by Gli and p53 integrated their effect on apoptosis. Treatment of human chondrosarcomas or fetal mouse limbs explants with IGFBP3 or by blocking IGF increased the apoptosis rate, and mice expressing Gli2 developed substantially fewer tumors when also deficient for Igf2. IGF signaling meditated apoptosis regulates the progression to malignant chondrosarcoma.
Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors.
Cell line
View SamplesOsteoarthritis (OA) is a common degenerative disease of the joint. Data from our lab indicates that Hedgehog (Hh) signaling is activated in human OA and murine models of OA (Lin et al., 2009, Nature Medicine). To identify Hh target genes, microarray analyses were performed to detect changes in gene expression when the Hh pathway was inhibited in human OA cartilage samples.
Regulation of Cholesterol Homeostasis by Hedgehog Signaling in Osteoarthritic Cartilage.
Sex, Specimen part, Treatment
View SamplesPURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth.
The investigational Aurora kinase A inhibitor MLN8237 induces defects in cell viability and cell-cycle progression in malignant bladder cancer cells in vitro and in vivo.
Specimen part
View SamplesWe are currently studying the mechanisms that confer tumour initiating potential upon SP, and as part of this work, we undertook gene profiling studies comparing expression between SP and non-SP cells, initially focusing on the most common soft tissue sarcoma, malignant fibrous histiocytoma (or MFH)
Hedgehog and Notch signaling regulate self-renewal of undifferentiated pleomorphic sarcomas.
No sample metadata fields
View SamplesTumours contain heterogeneous cell populations. A population enriched in tumour-initiating potential has been identified in soft-tissue sarcoma (STS) by the isolation of side population (SP) cells. In this study, we compared the gene expression profiles of SP and non-SP cells in STS and identified Hedgehog (Hh) and Notch pathways as potential candidates for the targeting of SP cells. Upon verification of the activation of these pathways in SP cells, using primary tumor xenografts in NOD-SCID mice as our experimental model, we used the Hh blocker Triparanol and the Notch blocker DAPT to demonstrate that the suppression of these pathways effectively depleted the abundance of SP cells, reduced tumour growth, and inhibited the tumour-initiating potential of the treated sarcoma cells upon secondary transplantation. The data provide additional evidence that SP cells act as tumour initiating cells and points to Hh and Notch pathways as enticing targets for developing potential cancer therapies.
Hedgehog and Notch signaling regulate self-renewal of undifferentiated pleomorphic sarcomas.
Specimen part
View SamplesTranscriptome analysis of hindlimb muscles from dystrophic mice
Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different?
Sex, Specimen part
View SamplesWe demonstrated that deletion of the p53 tumor suppressor gene in NG2 expressing cells resulted in the development of bone and soft tissue sarcomas that closely resemble human tumors. To determine gene expression differences between NG2 expressing pericytes lacking p53 and sarcomas that arose from deletion of p53 in NG2 expressing cells, RNA sequencing analysis was implemented. Overall design: We isolated total RNA from NG2 expressing pericytes (2 samples), which were sorted from skeletal muscle tissues of NG2-Cre;p53flox/flox mice using an NG2 antibody. We also isolated total RNA from osteosarcomas (2 samples) and soft tissue sarcomas (2 samples), which were developed in NG2-Cre;p53flox/flox mice. Differentially expressed genes were analyzed using Illumina HiSeq 2000.
Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype.
No sample metadata fields
View SamplesHow the various cell-types of the body achieve their specific shapes is fundamentally unknown. Here, we explore this issue by identifying genes involved in the elaboration of the complex, yet conserved, cellular morphology of Müller glial (MG) cells in the retina. Using genomic based strategies in zebrafish, we found more than 40 candidate genes involved in specific aspects of MG morphogenesis. The successive steps of cell morphogenesis correlate with the timing of the expression of cohorts of inter-related genes that have roles in generating the particular anatomical features of these cells, suggesting that a sequence of genetic regulomes govern stepwise cellular morphogenesis in this system. Overall design: 12 samples with three replicates each are provided. GFAP:GFP positive and negative cells were FAC sorted from wild type animals from each developmental stage
Genetic control of cellular morphogenesis in Müller glia.
Specimen part, Subject
View SamplesTranscription of the mammalian genome is pervasive, but productive transcription outside of protein-coding genes is limited by unknown mechanisms. In particular, although RNA polymerase II (RNAPII) initiates divergently from most active gene promoters, productive elongation occurs primarily in the sense-coding direction. Here we show in mouse embryonic stem cells that asymmetric sequence determinants flanking gene transcription start sites control promoter directionality by regulating promoter-proximal cleavage and polyadenylation. We find that upstream antisense RNAs are cleaved and polyadenylated at poly(A) sites (PASs) shortly after initiation. De novo motif analysis shows PAS signals and U1 small nuclear ribonucleoprotein (snRNP) recognition sites to be the most depleted and enriched sequences, respectively, in the sense direction relative to the upstream antisense direction. These U1 snRNP sites and PAS sites are progressively gained and lost, respectively, at the 5'' end of coding genes during vertebrate evolution. Functional disruption of U1 snRNP activity results in a dramatic increase in promoter-proximal cleavage events in the sense direction with slight increases in the antisense direction. These data suggest that a U1-PAS axis characterized by low U1 snRNP recognition and a high density of PASs in the upstream antisense region reinforces promoter directionality by promoting early termination in upstream antisense regions, whereas proximal sense PAS signals are suppressed by U1 snRNP. We propose that the U1-PAS axis limits pervasive transcription throughout the genome. Overall design: 3'' end sequencing of poly (A) + RNAs in mouse ES cells with and without U1 snRNP inhibition using antisense morpholino oligonucleotides (AMO). Each with two biological replicates.
Promoter directionality is controlled by U1 snRNP and polyadenylation signals.
Cell line, Treatment, Subject
View Samples