The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung. Overall design: Examination of open chromatin in 2 subtypes of alveolar epithelial cell populations
Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor.
Sex, Age, Specimen part, Race, Subject
View SamplesOrthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication.
Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions.
Specimen part
View SamplesComparison the gene expression profiles of mouse mammary tumors derived from MMTV-PyMT transgenic in five different strains including FVB/NJ, I/LnJ F1, NZB/B1NJ F1, MOLF/Ei F1 and LP/J F1 and identification of signatures of tumor virulence.
Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesIn mouse models, the bromodomain PHD finger transcription factor (BPTF) chromatin remodeling subunit in tumor cells suppresses natural killer (NK) cell antitumor activity.
BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity.
Specimen part, Cell line
View SamplesDepleting the NURF chromatin remodeling complex results in enhanced antitumor immunity using mouse tumor models syngenic to two strain backgrounds.
BPTF Depletion Enhances T-cell-Mediated Antitumor Immunity.
Specimen part
View SamplesThe hlh-30 gene encodes a C. elegans basic-helix-loop-helix (bHLH) transcription factor; We compared RNA from wild type worms and worms mutant for the hlh-30 gene to identify putative target genes of the HLH-30 transcription factor.
A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.
Cell line, Treatment, Time
View SamplesT lymphocytes are orchestrators of adaptive immunity. Nave T cells may differentiate into the Th1, Th2, Th17 or iTreg phenotype, depending on environmental co-stimulatory signals. In order to identify the genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli an pathway inhibitors
Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.
Cell line, Treatment
View SamplesT lymphocytes are orchestrators of adaptive immunity. Nave T cells may differentiate into the Th1, Th2, Th17 or iTreg phenotype, depending on environmental co-stimulatory signals. In order to identify the genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli an pathway inhibitors
Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.
Cell line, Treatment, Time
View SamplesEnhanced prenatal fatty streak formation in human fetuses has been associated with maternal hypercholesterolemia. However, the possible roles of maternal genetic background and in utero environment on development of atherosclerosis in adult life have not been unraveled. We generated genetically identical heterozygous apoE-deficient mice offspring with a different maternal background to study the intrauterine effect of maternal genotype and associated hypercholesterolemia on the developing vascular system. As read out for increased atherosclerosis development in adult life, a constrictive collar was placed around the carotid artery to induce lesion formation. A significant increase in endothelial cell activation and damage was detected in the carotid arteries of heterozygous apoE-deficient fetuses with apoE-deficient mothers compared with offspring from wild type mothers, but no fatty streak formation was observed. Postnatally, all carotid arteries revealed normal morphology. In adult offspring with maternal apoE-deficiency, the constrictive collar resulted in severe lesion (9/10) development compared with no to only minor lesions (2/10) in offspring of wild type mothers. Microarray analysis showed no effect of maternal apoE-deficiency on gene expression in adult offspring. We conclude that maternal apoE-deficiency not only affects fetal arteries, but also increases the susceptibility for development of collar-induced atherosclerosis in adult life.
Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life.
No sample metadata fields
View Samples