The Epidermal Growth Factor Receptor 2 (ERBB2 or HER2) is amplified and overexpressed in approximately 20% of invasive breast cancers and is associated with metastasis and poor prognosis. Here we describe the role of a constitutively active splice variant of HER2 (Delta-HER2) in human mammary epithelial cells. Overexpression of Delta-HER2 in human mammary cells decreased apoptosis and increased proliferation and expression of epithelial-to-mesenchymal markers. It also induced invasion in three-dimensional cultures and promoted tumorigenicity and metastasis in vivo. In contrast, similar overexpression of wild-type HER2 failed to evoke the same effects. Unbiased protein-tyrosine phosphorylation profiling revealed a significant increase in phosphorylation of several key signaling proteins upon Delta-HER2 expression, some of which not previously shown to belong to the HER2 pathway. In addition, microarray analysis revealed the expression of a set of genes specifically associated with Delta-HER2 expression. We found those genes to be highly expressed in ER-negative, high grade and metastatic primary breast tumors. Altogether, these results provide new insights into the function of a tumorigenic splice variant of HER2 and the signaling cascade deriving from its activity
Mammary tumor formation and metastasis evoked by a HER2 splice variant.
Cell line
View SamplesOur findings demonstrate that CDCP1 is a novel modulator of HER2 signalling, and a biomarker for the stratification of breast cancer patients with poor prognosis
Interaction of CDCP1 with HER2 enhances HER2-driven tumorigenesis and promotes trastuzumab resistance in breast cancer.
Cell line
View Sampleswe evaluated the mechanism behind NOTCH activation in prostate cancer
Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence.
Specimen part
View SamplesWe used microarrays to study the effect of Chd1 loss of function in mouse ES cells.
Chd1 regulates open chromatin and pluripotency of embryonic stem cells.
Cell line
View SamplesMetabolism in cancer serves to provide energy and key biomolecules that sustain cell growth, a process that is frequently accompanied by decreased mitochondrial use of glucose. Importantly, metabolic intermediates including mitochondrial metabolites are central substrates for post-translational modifications at the core of cellular signalling and epigenetics. However, the molecular means that coordinate the use of mitochondrial metabolites for anabolism and nuclear protein modification are poorly understood. Here, we unexpectedly found that genetic and pharmacological inactivation of Pyruvate Dehydrogenase A1 (PDHA1), a subunit of pyruvate dehydrogenase complex (PDC) that regulates mitochondrial metabolism16 inhibits prostate cancer development in different mouse and human xenograft tumour models. Intriguingly, we found that lipid biosynthesis was strongly affected in prostate tumours upon PDC inactivation. Mechanistically, we found that nuclear PDC controls the expression of Sterol regulatory element-binding transcription factor (SREBF) target genes by mediating histone acetylation whereas mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated effort to sustain anabolism. In line with the oncogenic function of PDC in prostate cancer, we find that PDHA1 and the PDC activator, Pyruvate dehydrogenase phospatase 1 (PDP1), are frequently amplified and overexpressed at both gene and protein level in these tumours. Taken together, our findings demonstrate that both mitochondrial and nuclear PDC sustains prostate tumourigenesis by controlling lipid biosynthesis thereby pointing at this complex as a novel target for cancer therapy.
Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.
No sample metadata fields
View SamplesWe used microarrays to identify the gene expression changes after Smarcd1 knockdown in ESCs and 4 day RA differentiated ESCs
Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation.
Specimen part
View SamplesWe synthesized the PAX8-NFE2L2 fusion transcript and cloned it into a lentiviral vector, and used this to overexpress it in the murine prostate adenocarcinoma cell line TRAMP-C1. Overall design: We used high coverage RNA sequencing (>30 million reads per sample) to compare the expression profiles of cells expressing the PAX8-NFE2L2 fusion transcript to cells transduced with an empty vector.
Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers.
Specimen part, Cell line, Subject
View SamplesExpression analysis of genes potentially regulated by BMPRII and beta-catenin. BMPRII has been linked as a genetic factor to the disease pulmonary arterial hypertension.
Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival.
Specimen part
View SamplesSome of the functions and mechanisms of PPAR?-mediated regulation of vascular homeostasis have been revealed, the potential role of PPAR? in angiogenesis is obscure. In human ECs, PPAR?-deficiency was studied using siRNA strategy and RNA sequencing was utilized to reveal angiogenesis-associated targets for PPARg. Overall design: Our aim is to reveal the possible role of PPARy in angiogenesis.
Loss of PPARγ in endothelial cells leads to impaired angiogenesis.
No sample metadata fields
View SamplesDevelopmental transitions can be described in terms of morphology and individual genes expression patterns, but also in terms of global transcriptional and epigenetic changes. Most of the large-scale studies of such transitions, however, have only been possible in synchronized cell culture systems. Here we generate a cell type specific transcriptome of an adult stem-cell lineage in the Arabidopsis leaf using RNA sequencing and microarrays. RNA profiles of stomatal entry, commitment, and differentiating cells, as well as of mature stomata and the entire aerial epidermis give a comprehensive view of the developmental progression.
Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population.
Specimen part
View Samples