The goal of this study was to analyze global gene expression in specific populations of somatosensory neurons in the periphery, including major, non-overlapping populations that include nociceptors, pruriceptors, and prorioceptors. The mammalian somatosensory nervous system encodes the perception of specific environmental stimuli. The dorsal root ganglion (DRG) contains distinct somatosensory neuron subtypes that innervate diverse peripheral tissues, mediating the detection of thermal, mechanical, proprioceptive, pruriceptive, and nociceptive stimuli. We purified discrete subtypes of mouse DRG somatosensory neurons by flow cytometry using fluorescently labeled mouse lines (SNS-Cre/TdTomato, Parv-Cre/TdTomato) in combination with Isolectin B4-FITC surface staining (IB4). This allowed identification of transcriptional differences between these major populations, revealing enrichment of voltage-gated ion channels, TRP channels, G-protein coupled receptors, transcription factors, and other functionally important classes of genes within specific somatosensory neuron subsets.
Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.
Specimen part
View Samplescheck the effect of over expression and down regulation of this clade of TFs
The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesMesenchymal populations include a fraction of cells exhibiting multipotency as well as others with limited differentiation range. It has been assumed that the mesenchymal cellular cascade is topped by a multipotent cell, which gives rise to progeny with diminishing differentiation potentials. Here we show that cultured mesenchymal cells, a priori exhibiting a limited differentiation potential, may gain new capacities and become multipotent following single cell isolation. These fate changes were accompanied by up-regulation of differentiation promoting genes, many of which also became H4K20me1 methylated. Early events in the process included TGF and Wnt modulation, and down-regulation of hypoxia signaling. Indeed, hypoxic conditions inhibited the observed cell changes. Overall, cell isolation from neighboring partners caused major molecular changes and particularly, a newly established epigenetic state. It is suggested that MSCs behave non-deterministically and non-hierarchically and should therefore be defined primarily by their capacity to undergo fate changes triggered by environmental cues.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesMesenchymal populations include a fraction of cells exhibiting multipotency as well as others with limited differentiation range. It has been assumed that the mesenchymal cellular cascade is topped by a multipotent cell, which gives rise to progeny with diminishing differentiation potentials. Here we show that cultured mesenchymal cells, a priori exhibiting a limited differentiation potential, may gain new capacities and become multipotent following single cell isolation. These fate changes were accompanied by up-regulation of differentiation promoting genes, many of which also became H4K20me1 methylated. Early events in the process included TGF and Wnt modulation, and down-regulation of hypoxia signaling. Indeed, hypoxic conditions inhibited the observed cell changes. Overall, cell isolation from neighboring partners caused major molecular changes and particularly, a newly established epigenetic state. It is suggested that MSCs behave non-deterministically and non-hierarchically and should therefore be defined primarily by their capacity to undergo fate changes triggered by environmental cues.
Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials.
Specimen part
View SamplesIn Arabidopsis, an individually darkened leaf (IDL) initiates senescence much quicker than a leaf from an entirely darkened plant (DP).
Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival.
Specimen part
View Samples