Full title: Expression data from human primary subcutaneous preadipocytes treated with glucocorticoids prior to the initiation of differentiation.
Insulin sensitization of human preadipocytes through glucocorticoid hormone induction of forkhead transcription factors.
Specimen part
View SamplesGata2, a zinc finger TF, is essential for the generation and survival of HSCs in the embryo and has been implicated in the pathogenesis of AML, yet the requirement for Gata2 in adult HSCs and LSCs remains unclear. Using a conditional mouse model where Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to a rapid and complete cell-autonomous loss of adult HSCs. In Meis1a/Hoxa9 driven AML, deletion of Gata2 impedes maintenance and self-renewal of LSCs. We then performed RNA-seq from sorted control and Gata2 KO LSCs (CD45.2+ c-Kit+) after pIpC treatment in transplanted mice. Overall design: Wild Type and Gata2-/- Meis1a/Hoxa9 LSCs were harvested from mice 24 days after pIpC administration
Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia.
Cell line, Subject
View SamplesGata2, a zinc finger TF, is essential for the generation and survival of HSCs in the embryo and has been implicated in the pathogenesis of AML, yet the requirement for Gata2 in adult HSCs and LSCs remains unclear. Using a conditional mouse model where Gata2 was deleted specifically in hematopoietic cells, we show that knockout of Gata2 leads to a rapid and complete cell-autonomous loss of adult HSCs. We then performed RNA-seq in sorted HSCs (LSK CD48- CD150+) from control and Gata2+/fl;Vav-iCre+ 8-to-10-week old mice. Overall design: Wild Type and Gata2+/- HSCs were harvested from 8-to-10-week old mice
Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia.
Cell line, Subject
View SamplesTo gain insight into the etiopathogenesis of Multiple sclerosis (MS) we investigated gene expression changes in CD4+ and CD8+ T lymphocytes from monozygotic twins (MZ) discordant for relapsing remitting MS.
CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classification is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View SamplesCorticosteroids are the current standard of care to improve short_term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre_treatment predictors are lacking. We developed 123_gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA_approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring_based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View SamplesTSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, heterozygous Tshz3-deficient mice show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. Overall design: Three independent replicates, each containing cortices from 3-4 embryos from multiple litters, were prepared from wild-type and Tshz3 mutant neocortex at E18.5. Caubit et al., TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons. Nat. Genet ###, xxx-yyy (2016).
TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons.
Specimen part, Subject
View SamplesLuminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.
Specimen part, Treatment
View Samples