Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.
Specimen part, Treatment
View SamplesUV-B radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibits maize leaf growth without causing any other visible stress symptoms, including accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth is a consequence of a reduction in cell production, and a shortened growth zone (GZ) in UV-B irradiated leaves. To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including Growth Regulating Factors (GRFs) and transcripts for proteins participating in different hormone pathways. Overall design: Factorial design with two factors: Treatment (control vs UV-B) x Zone I (0-1cm from base of the leaf), 2 (1-2cm from base of the leaf) and 3 (2-3cm from base of the leaf), 3 replicates
UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels.
Specimen part, Subject
View SamplesWe studied two growth phases- proliferation, and expansion in first pair of leaves in Arabidosis using two different overexpression lines of PID gene. Ectopic expression of PID lead to small rosette and leaf phenotype. Overall design: We used first pair of leaves from proliferation ( 9 DAS-days after stratification) and expansion (16 DAS) stage from wild type Col-0 ecotype, 35S::PID10, 35S::PID21. Three genotype, three biological replicates, two time points (=18 sample). Experiment repeated twice generating two reads in two lanes i.e. L001 & L002 for each sample. Results calculated after combining reads from both lanes (=18x2=36 raw files; 2 for each sample)
Perturbation of Auxin Homeostasis and Signaling by <i>PINOID</i> Overexpression Induces Stress Responses in Arabidopsis.
Specimen part, Subject
View SamplesPsychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.
Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.
Sex, Age, Specimen part
View SamplesThe initial segment of the epididymis is vital for male fertility, therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from epididymis, a subset of cells within the initial segment undergo apoptosis. In this study, microarray analyses was used to examine early changes in the downstream signal transduction pathways following the loss of lumicrine factors, and we discovered the following cascade of events leading to loss of protection and eventual apoptosis. First, mRNA expression of several key components of ERK pathway decreased sharply after 6 hours of loss protection from testicular lumicrine factors. After 12 hours, the levels of mRNA expression of STAT and NF-B pathways components increased, mRNA expression of genes encoding cell cycle inhibitors increased. After 18 hours of loss protection from testicular lumicrine factors, apoptosis was observed in the initial segment. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating ERK pathway, repressing STAT and NF-B pathways, and preventing a cascade of reactions leading to apoptosis.
Testicular lumicrine factors regulate ERK, STAT, and NFKB pathways in the initial segment of the rat epididymis to prevent apoptosis.
Sex, Specimen part, Time
View SamplesAberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis
ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
Specimen part
View SamplesAbstract: Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage, and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage, and ß-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across 8 diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 47 RNAs consistently elevated and 26 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some long noncoding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy, and the development of strategies to target senescent cells therapeutically. Overall design: Transcriptomic analysis of various cell line models of senescence and their respective controls
Transcriptome signature of cellular senescence.
Specimen part, Cell line, Treatment, Subject
View SamplesInterleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in STAT3 activation and downstream signaling. Here, a transcriptional profiling was conducted as a basis for understanding the biological properties of PDTC in human HepG2 hepatocarcinoma cells. A global comparison of mRNA identified a highly significant difference of dysregulated gene expression transduced by PDTC versus IL-6 in HepG2 cells. Through an unbiased pathway analysis method, we have uncovered the mammalian target of rapamycin (mTOR) pathway together with rapid and dynamic alterations in REDD1 (regulated in development and DNA damage response 1) expression as one of the underlying molecular mechanisms responsible for IL-6 resistance to PDTC. Quantitative PCR and Western blot analyses validated the microarray data by showing the reciprocal pattern of REDD1 expression and subsequent mTOR inhibition after stimulation with PDTC relative to IL-6.
Impact of pyrrolidine dithiocarbamate and interleukin-6 on mammalian target of rapamycin complex 1 regulation and global protein translation.
Cell line
View SamplesDifferential gene expression analysis of oesophageal cells stimulated with a low pH environment. Study designed to identify pathways involved in progression of gastro-oesophageal reflux disease through Barrett's oesophagus to adenocarcinoma. Identified many subsets of genes with involvement in pathogenesis.
Low pH induces co-ordinate regulation of gene expression in oesophageal cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation.
Specimen part, Treatment
View Samples