github link
Accession IconSRP094802

DRB/GRO-Seq -/+ UV

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ~25 kilobases is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter transcript isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The protein-coding ASCC3 isoform counteracts the function of the non-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and noncoding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage. Overall design: Cells were treated with DRB (100 µM, 3.5 hrs), followed by UVC irradiation (15 J/m2) or left untreated. Cells were washed with PBS to remove DRB immediately after UV irradiation and incubated for 10, 25 or 40 minutes, followed by cell lysis and nuclei isolation. Nuclei were processed for GRO-Seq.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Treatment
Subject
Time
Processing Information
Additional Metadata
No rows found
Loading...