Description
We report a pilot investigation for poly-A RNAs differentially expressed during Mycobacterium tuberculosis infection. Participation in this investigation from March 2010 to July 2013 was voluntary, only subjects that were >18 years old and that informed written consent were considered eligible. The recruitment of tuberculosis (TB) patients was done at public hospitals in Rio de Janeiro, Brazil. The diagnostic criteria for active pulmonary tuberculosis was at least one AFB (acid-fast bacilli) -positive sputum sample for M. tuberculosis and/or positive sputum culture and/or compatible clinical evolution for pulmonary TB and less than 15 days of anti-TB treatment and was in accordance with those of the Brazilian Ministry of Health. Blood was collected from recent close contacts (rCt) and active tuberculosis (TB) index cases (n=6). Latent TB infection (LTBI) was accessed by both tuberculin skin test (TST, cut-off = 5mm) and in house interferon-gamma release assays (IGRA, cut-off = 100 pg/ml), therefore, 12 rCt were classified as uninfected controls and 16 with LTBI. Subsequently, the sequencing was performed following the standard protocols on Illumina HiSeq® 2500 Sequencing System (Illumina, San Diego, CA) running 100 bp paired-end reads (PE100) and generating approximately 30 million reads passing filter for each sample to produce the mRNA reads. Mining these RNAseq data, highly prominent modulation of DOCK9, EPHA4, and NPC2 mRNA expression was observed in the TB samples, indicating that they might have a role in TB pathogenesis. These differential modulations upon M. Tuberculosis infection were further validated by additional evidences in larger cohorts from different geographical areas. Overall design: We collected blood samples from the recent close contacts (rCt) at the recruitment and monitored them for 1-year. All TB participants were treatment-naïve. An infection mRNA signature was derived from whole blood RNA sequencing data by comparing TB and uninfected rCt. We selected the 3 most prominent genes, by area under the ROC curve analysis, for additional validations. Some of the LTBI participants also showed the mRNA infection profile.