Description
Recurrent chromosomal translocations involving the mixed lineage leukemia gene (MLL) give rise to highly aggressive acute leukemia associated with poor clinical outcomes. The preferential involvement of chromatin-associated factors in MLL rearrangements belies a dependency on transcriptional control. To identify new targets for therapeutic development in MLL, we performed a genome-scale CRISPR-Cas9 knockout screen in MLL-AF4 leukemia. Among validated targets, we identified the transcriptional regulator, ENL, as an unrecognized dependency particularly indispensable for proliferation. To explain the mechanistic role for ENL in leukemia pathogenesis and the dynamic role in transcription control, we pursued a chemical genetic strategy utilizing targeted protein degradation. ENL loss suppresses transcription initiation and elongation genome-wide, with pronounced effects at genes featuring disproportionate ENL load. Importantly, ENL-dependent leukemic growth was contingent upon an intact YEATS epigenomic reader domain. These findings reveal a novel dependency in acute leukemia and a first mechanistic rationale for disrupting YEATS domains in disease. Overall design: RNA-seq in MV4;11 (Cas9; ENL-FKBP(F36V); ENL -/-) cells with dTAG-13 and EPZ-5676 treatment