github link
Accession IconSRP070753

Mitochondrial stress induces chromatin reorganization to promote longevity and UPRmt

Organism Icon Caenorhabditis elegans
Sample Icon 18 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension. Overall design: comparison of gene expression changes in response to cco-1 RNAi treatment in N2, lin-65(n3441) and met-2(ok2307) populations of C. elegans L4 animals
PubMed ID
Total Samples
18
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...