Description
Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. Overall design: RNA sequencing analysis was performed on a total of 12 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 3 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 1 control embryonic stem cell (ESC) line.