Description
We compared the performance of conventional RNAseq with RNA Capture Sequencing (CaptureSeq) to assemble and quantify known RNA spike-Ins and human transcripts. We find CaptureSeq to be superior for the detection and quantification of the 37% lowest expressed genes, and comparable for the next 45% of moderately expressed genes. CaptureSeq contributes only minor technical variation and measures differential gene expression accurately. We demonstrate these advantages by the targeted sequencing of long noncoding RNAs across 20 human tissues, expanding previous annotations two-fold and simultaneously generating a quantitative atlas of expression. This analysis confirms the use of CaptureSeq as an important method for transcriptional profiling. Overall design: Long noncoding RNA assembly and expression is analysed by targeted RNA sequencing for 20 human tissues and 4 human cell lines