github link
Accession IconSRP033561

Transcriptome analysis of cells of different cycling speed during Yamanaka reprogramming

Organism Icon Mus musculus
Sample Icon 24 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient, and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a non-stochastic manner. Subsets of murine hematopoietic progenitors are privileged, whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after 4-5 divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ~8 hours. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression, and is increased by p53-knockdown. This ultrafast-cycling population accounts for >99% of the bulk reprogramming activity in wildtype or p53-knockdown fibroblasts. We compared the transcriptomes of the fast cycling cells with those of slower hematopoietic progenitors, bulk fibroblasts and established iPS cells. Overall design: 3-5 replicates for each of the six cell types were included: 4 replicates for established iPS cells, 4 replicates for bulk mouse embryonic fibroblasts (MEF), 4 replicates for fast cycling MEF, 4 replicates for slow cycling MEF, 5 replicates for fast cycling granulocyte monocyte progenitors (GMP) and 3 replicates for slow cycling GMP.
PubMed ID
Total Samples
24
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...