Description
Cutaneous, acral and mucosal subtypes of melanoma were evaluated by whole-genome sequencing, revealing genes affected by novel recurrent mutations to the promoter (TERT, DPH3, OXNAD1, RPL13A, RALY, RPL18A, AP2A1), 5-UTR (HNRNPUL1, CCDC77, PES1), and 3-UTR (DYNAP, CHIT1, FUT9, CCDC141, CDH9, PTPRT) regions. TERT promoter mutations had the highest frequency of any mutation, but neither they nor ATRX mutations, associated with the alternative telomere lengthening mechanism, were correlated with greater telomere length. Genomic landscapes largely reflected ultraviolet radiation mutagenesis in cutaneous melanoma and provided novel insights into melanoma pathogenesis. In contrast, acral and mucosal melanomas exhibited predominantly structural changes, and mutation signatures of unknown aetiology not previously identified in melanoma. The majority of melanomas had potentially actionable mutations, most of which were in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways.