Description
Intercellular communication is critical for integrating complex signals in multicellular eukaryotes. Vascular endothelial cells and T lymphocytes closely interact during the recirculation and trans-endothelial migration of T cells. In addition to direct cell-cell contact, we show that T cell derived extracellular vesicles can interact with endothelial cells and modulate their cellular functions. Thrombospondin-1 and its receptor CD47 are expressed on exosomes/ectosomes derived from T cells, and these extracellular vesicles are internalized and modulate signaling in both T cells and endothelial cells. Extracellular vesicles released from cells expressing or lacking CD47 differentially regulate activation of T cells induced by engaging the T cell receptor. Similarly, T cell-derived extracellular vesicles modulate endothelial cell responses to vascular endothelial growth factor and tube formation in a CD47-dependent manner. Uptake of T cell derived extracellular vesicles by recipient endothelial cells globally alters gene expression in a CD47-dependent manner. CD47 also regulates the mRNA content of extracellular vesicles in a manner consistent with some of the resulting alterations in target endothelial cell gene expression. Therefore, the thrombospondin-1 receptor CD47 directly or indirectly regulates intercellular communication mediated by the transfer of extracellular vesicles between vascular cells.