Description
Myelodysplastic Syndromes (MDS) result from expansion of defective hematopoietic stem/progenitor clones. There is an urgent need to develop targeted therapies capable of eliminating the defective MDS clones. We identified that IRAK1, an immune modulating kinase, is overexpressed and hyperactivated in MDS. MDS-propagating clones treated with a small-molecule IRAK1 inhibitor (IRAK1/4-Inh) exhibited impaired expansion and increased apoptosis, which coincided with TRAF6/NF-B inhibition. Suppression of IRAK1, either by RNAi or with IRAK1/4-Inh, is selectively detrimental to MDS clones as normal CD34+ cells are preserved. Based on conclusions derived from an integrative gene expression analysis, we combined IRAK1 and BCL2 inhibitors and found that co-treatment collaboratively and selectively eliminated MDS clones. In summary, these findings implicate IRAK1 as a drugable target in MDS.