Description
The pattern of gene transcription in Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. To investigate the requirement of PKA for glucose control of gene expression, we have analyzed global transcription in strains devoid of PKA activity. In S. cerevisiae three genes, TPK1, TPK2, TPK3, encode catalytic subunits of PKA and the triple mutant tpk1 tpk2 tpk3 is unviable. We have worked, therefore, with two strains, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4, that bear suppressor mutations,. We have identified different classes of genes that can be induced, or repressed, by glucose in the absence of PKA. Among these genes, some are also controlled by a redundant signalling pathway involving PKA activation, while others do not respond to an increase in cAMP concentration. On the other hand, among genes which do not respond to glucose in the absence of PKA, some show a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways.