Description
Liver fibrosis is a high-morbidity and high-mortality chronic disease throughout the world without any satisfying treatment Large-conductance Ca2+- and voltage-activated K+ (Slo1, BK) channels are widely expressed in human body and important for numerous physiological processes. Previous studies have shown that BK channels are expressed in HSCs of patients with liver fibrosis and they are involved in contraction/relaxation of the HSCs To investigate the molecular mechanism of antifibrotic effect of BK channel opener rottlerin using in vivo fibrosis models. transcriptomic analyses of differential expression genes in livers from rats of vehicle, CCl4 and CCl4 combined with rottlerin treatment were for discrimination. The RNA samples were extracted from three samples of each group for microarray profiling and performed in Affymetrix Rats Genome 230 2.0 arrays for gene expression profiling analysis, which contained 31 042 probe sets. The biotinylated cRNA targets were hybridized with the microarray. After hybridization, arrays were stained in the Fluidics Station 450 and scanned on the Affymetrix Scanner 3000. The microarray experiments were performed by following the protocol of Affymetrix Inc at Shanghai Biotechnology Corporation. Under the criteria fold change > 1.5 or < 0.67, we obtained 10672 differential expressed genes (DEGs) between CCl4 and CCl4 combined with rottlerin treatment group, and the data was applied to further analysis.